Predicting the effects of pollution at the community level is difficult because of the complex impacts of ecosystem dynamics and properties. To predict the effects of copper on a plant-herbivore interaction in a freshwater ecosystem, we built a model that focuses on the interaction between an alga, Scenedesmus sp., and a herbivore, Daphnia sp. The model assumes logistic growth for Scenedesmus and a type II functional response for Daphnia. Internal copper concentrations in Scenedesmus and Daphnia are calculated using a biodynamic model. We include two types of direct effects of copper on Scenedesmus and Daphnia that results from hormesis: a deficiency effect at low concentration and a toxic effect at high concentration. We perform a numerical analysis to predict the combined effects of copper and nutrient enrichment on the Scenedesmus-Daphnia interaction. Results show three types of outcomes depending on copper concentration. First, low (4 μg L(-1)) and high (50 μg L(-1)) copper concentrations cause deficiency and toxicity, respectively, leading to the extinction of all populations; for less extreme concentrations (between 4 and 5 μg L(-1) and between 16.5 and 50 μg L(-1)), only the consumer population becomes extinct. The two populations survive with intermediate concentrations. Second, when population dynamics present oscillations, copper has a stabilizing effect and reduces or suppresses oscillations. Third, copper, on account of its stabilizing effect, opposes the destabilizing effect of nutrient enrichment. Our model shows that (1) Daphnia is affected by copper at lower concentrations when community interactions are taken into account than when analyzed alone, and (2) counterintuitive effects may arise from the interaction between copper pollution and nutrient enrichment. Our model also suggests that single-value parameters such as NOEC and LOEC, which do not take community interactions into account to characterize pollutants effects, are unable to determine pollutant effects in complex ecosystems. More generally, our model underscores the importance of ecosystem-scale studies to predict the effects of pollutants.
Although there is an increasing interest in the effects of anthropogenic noise on animals, aquatic studies mainly focus on organisms with hearing systems (marine mammals, fish, great arthropods) while many others of substantial ecological importance are not considered. Here we show that the water flea Daphnia magna, a widespread zooplankton species serving as food source for higher trophic levels, could be affected by noise pollution in a way that we did not expect. We found that isolated individuals exposed to a continuous broadband sound have a higher survival and fecundity, thus a higher fitness. We also found that they are slower than individuals not exposed to additional noise. It could be that the energy saved from reduced mobility is reallocated to fitness. In natural systems, this reduced velocity should result in a more negative outcome for Daphnia's fitness due to competition and predation. Our result highlights that, despite the absence of a known hearing system, a small crustacean can be affected by noise. Consequently, anthropogenic noise can not only affect communities through top-down cascading effects, when it changes the behaviour of top-predators like fish, but also via bottom-up effects with alterations in zooplankton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.