The manipulation of the second coordination sphere for improving the electrocatalytic CO2 reduction has led to breakthroughs with hydrogen bonding, local proton source, or electrostatic effects. We have developed two atropisomers of an iron porphyrin complex with two urea functions acting as multiple hydrogen‐bonding tweezers to lock the metal‐bound CO2 in a similar fashion found in the carbon monoxide dehydrogenase (CODH) enzyme. The αα topological isomer with the two urea groups on the same side of the porphyrin provides a stronger binding affinity to tether the incoming CO2 in comparison to the αβ disposition. However, the electrocatalytic activity of the αβ atropisomer outperforms its congener with one of the highest reported turnover frequencies at low overpotential. The strong H/D kinetic isotope effect (KIE) observed for the αα system indicates the existence of a tight water hydrogen‐bonding network for proton delivery which is disrupted by addition of an acid source. The small H/D KIE for the αβ isomer and the enhanced electrocatalytic performance on addition of stronger acid indicate the free access of protons to the bound CO2 on the opposite side of the urea arm.
α‐Phosphorylated para‐methoxybenzyl allenamides were oxidised with cerium(IV) to produce spirodienone lactams through a 5‐endo‐dig cyclisation. By modulating the electronic effects on the phosphorus and nitrogen atoms we were able to overcome some of the limitations of our first‐generation approach. Moreover, replacement of α‐allenylphosphonates with ynamido‐phosphonates led, in two steps, to the same spirodienone core after oxidation with cerium(IV) hence overcoming other limitations of the previous method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.