Intrinsically disordered proteins (IDPs) are predicted to represent a significant fraction of the human genome, and the development of meaningful molecular descriptions of these proteins remains a key challenge for contemporary structural biology. In order to describe the conformational behavior of IDPs, a molecular representation of the disordered state based on diverse sources of structural data that often exhibit complex and very different averaging behavior is required. In this study, we propose a combination of paramagnetic relaxation enhancements (PREs) and residual dipolar couplings (RDCs) to define both long-range and local structural features of IDPs in solution. We demonstrate that ASTEROIDS, an ensemble selection algorithm, faithfully reproduces intramolecular contacts, even in the presence of highly diffuse, ill-defined target interactions. We also show that explicit modeling of spin-label mobility significantly improves the reproduction of experimental PRE data, even in the case of highly disordered proteins. Prediction of the effects of transient long-range contacts on RDC profiles reveals that weak intramolecular interactions can induce a severe distortion of the profiles that compromises the description of local conformational sampling if it is not correctly taken into account. We have developed a solution to this problem that involves efficiently combining RDC and PRE data to simultaneously determine long-range and local structure in highly flexible proteins. This combined analysis is shown to be essential for the accurate interpretation of experimental data from R-synuclein, an important IDP involved in human neurodegenerative disease, confirming the presence of long-range order between distant regions in the protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.