A walker is a fluid entity comprising a bouncing droplet coupled to the waves that it generates at the surface of a vibrated bath. Thanks to this coupling, walkers exhibit a series of wave-particle features formerly thought to be exclusive to the quantum realm. In this paper, we derive a model of the Faraday surface waves generated by an impact upon a vertically vibrated liquid surface. We then particularise this theoretical framework to the case of forcing slightly below the Faraday instability threshold. Among others, this theory yields a rationale for the dependence of the wave amplitude to the phase of impact, as well as the characteristic timescale and length scale of viscous damping. The theory is validated with experiments of bead impact on a vibrated bath. We finally discuss implications of these results for the analogy between walkers and quantum particles.
An elastic strip is transversely clamped in a curved frame. The induced curvature decreases as the strip opens and connects to its flat natural shape. Various ribbon profiles are measured and the scaling law for the opening length validates a description where the in-plane stretching gradually relaxes the bending stress. An analytical model of the strip profile is proposed and a quantitative agreement is found with both experiments and simulations of the plates equations. This result provides a unique illustration of smooth nondevelopable solutions in thin sheets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.