MHC-restricted T cells are thought to contribute to clinical demyelination in MS and other circumstances. The step-by-step mechanisms involved and ways of controlling them are still being defined. Identification of the MHC+ cells in the CNS in situ has been controversial. This chapter reviews MHC expression in neural tissue, including normal, pathological, experimental, and developing tissue in situ and isolated cells in vitro. A basic pattern is defined, in which MHC expression is limited to nonneural cells and strongest class I and II expression are on different cell types. Variations from the basic pattern are reviewed. Ways of reconciling divergent findings are discussed, including the use of "mock tissue" to help choose between technical and biological bases for divergent findings, the potential contribution of internal antigen to the in situ staining patterns, and the possibility that class I upregulation is actively suppressed in situ. Functional implications of the observed patterns of MHC expression and ways of confirming the function of each MHC+ cell type in situ are described. It is suggested that modulating MHC expression in different cell types at different times or in different directions might be desirable.
Monoclonal antibodies (mAbs) are used with increasing success against many tumors, but for brain tumors the blood-brain barrier (BBB) is a special concern. The BBB prevents antibody entry to the normal brain; however, its role in brain tumor therapy is more complex. The BBB is closest to normal at micro-tumor sites; its properties and importance change as the tumor grows. In this review, evolving insight into the role of the BBB is balanced against other factors that affect efficacy or interpretation when mAbs are used against brain tumor targets. As specific examples, glioblastoma multiforme (GBM), primary central nervous system lymphoma (PCNSL) and blood-borne metastases from breast cancer are discussed in the context of treatment, respectively, with the mAbs bevacizumab, rituximab and trastuzumab, each of which is already widely used against tumors outside the brain. It is suggested that success against brain tumors will require getting past the BBB in two senses: physically, to better attack brain tumor targets, and conceptually, to give equal attention to problems that are shared with other tumor sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.