The nonlinear equations of motion of an elastica that moves out of a horizontal guide at a constant velocity are expressed in terms a dimensionless weight-to-stiffness ratio and a dimensionless velocity. The equations are written in horizontal-vertical directions rather than tangential-normal directions to minimize algebraic complexities. The introduction of deformation potentials allows each of the linear momentum equations to be integrated once. This simplifies the remaining equations. A series solution of the equations, useful for small motions—and perhaps useful for design—is given. To facilitate numerical solution, the triangular space-time domain of the problem is transformed into a square domain in pseudo space-time. Finally, some solutions based on the finite element method are presented for typical values of the dimensionless weight-to-stiffness and velocity parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.