The ETS gene products are a family of transcriptional regulatory proteins that contain a highly conserved and structurally unique DNA binding domain, termed the ETS domain. Several ETS proteins bind to DNA as monomers, however it has been shown that the DNA binding activity is enhanced or modulated in the presence of other factors. By dierential display and whole genome PCR techniques, we have recently shown that the Erg1 gene is a target for ETS proteins. The Egr1 promoter contains multiple ETS binding sites, three of which exist as parts of two serum response elements (SREI and SREII). The SRE is a cis-element that regulates the expression of many growth factor responsive genes. ELK1 and SAP1a have been shown to form ternary complexes with SRF on the SRE located in the cfos promoter. Similarly, we examined whether the ELK1, SAP1a, FLI1, EWS-FLI1, ETS1, ETS2, PEA3 and PU.1 proteins can form ternary complexes with SRF on the Egr1 SREI and II. Our results demonstrate that indeed ELK1, SAP1a, FLI1 and EWS-FLI1 are able to form ternary complexes with SRF on Egr1 SREs. In addition, ELK1 and SAP1a can also form quarternary complexes on the Egr1 SREI. However, the proteins ETS1, ETS2, PEA3 and PU.1 were unable to form ternary complexes with SRF on either the Egr1 or c-fos SREs. Our data demonstrate that FLI1 and EWS-FLI1 constitute new members of a subgroup of ETS proteins that can function as ternary complex factors and further implicate a novel function for these ETS transcription factors in the regulation of the Egr1 gene. By amino acid sequence comparison we found that, in fact, 50% of the amino acids present in the B-box of SAP1a and ELK1, which are required for interaction with SRF, are identical to those present in both FLI1 (amino acids 231 ± 248) and EWS-FLI1 proteins. This B-box is not present in ETS1, ETS2, PEA3 or PU.1 and these proteins were unable to form ternary complexes with SRF and Egr1-SREs or cfos SRE. Furthermore, deletion of 194 amino terminal amino acids of FLI1 did not interfere with its ability to interact with SRF, in fact, this truncation increased the stability of the ternary complex. The FLI1 protein has a unique R-domain located next to the DNA binding region. This R-domain may modulate the interaction with SRF, providing a mechanism that would be unique to FLI1 and EWS-FLI1, thus implicating a novel function for these ETS transcription factors in the regulation of the Egr1 gene.
ets is a multigene family and its members share a common ETS DNA-binding domain. ETS proteins activate transcription via binding to a purine-rich GGAA core sequence located in promoters/enhancers of various genes, including several that are transcriptionally active in T cells. The ETS1, ETS2, and ERBG/Hu-FLI-1 gene expression pattern also suggests a role for these genes in cells of hematopoietic lineage. The HIV-1 LTR core enhancer contains two 10-base pair direct repeat sequences (left and right) that are required for regulation of HIV-1 mRNA expression by host transcription factors, including NF kappa B. Two ETS-binding sites are present in the core enhancer of all the HIV-1 isolates reported so far. In our studies, we utilized HIV-1 HXB2 and HIV-1 Z2Z6 core enhancers because the Z2Z6 strain has a single point mutation flanking the right ETS-binding site. We demonstrate that the ETS1, ETS2, and ERGB/Hu-FLI-1 proteins can trans-activate transcription from both the HXB2 and Z2Z6 core enhancer when linked to a reporter (cat) gene. In addition, we show that the DNA binding and trans-activation with the Z2Z6 core enhancer is at least 40-fold higher than that observed with the HXB2 core enhancer. Further, we provide evidence that the marked increase in binding and trans-activation with Z2Z6 core enhancer sequences is due to the substitution of a flanking T residue in HXB2 TGGAA) by a C residue in Z2Z6 (CGGAA) isolate, thus generating an optimal ETS-binding core (CGGAA) sequence.
ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing's sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A 2 -activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene.
Classroom dialogue provides significant opportunity for students to build on their understanding of a subject. It is also a vector through which the educator can assess progress in their lessons (Alexander, 2008). The purpose of this study was to explore what effect a specific form of classroom dialogue (the Socratic seminar) has on student engagement, and consequently, their learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.