Human hepatic microsomal enzymes catalyzed the NADPH-dependent anaerobic reductive activation of [1-14C]metronidazole [1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole] and [4,5-14C]ronidazole [(1-methyl-5-nitroimidazole-2-yl)methyl carbamate] to species that became covalently bound to proteins. Due to the low efficiency of the enzyme-catalyzed covalent binding of metronidazole, the stoichiometry of anaerobic reductive activation was studied with dithionite as the reductant. Two moles of dithionite was consumed per mole of [1-14C]metronidazole for maximal covalent binding to either DNA or immobilized sulfhydryl groups, demonstrating that four electrons are required for the reductive activation of metronidazole. These data implicate the involvement of a hydroxylamine in covalent binding. Maximal covalent binding of [4,5-14C]ronidazole to DNA also required four-electron reduction, consistent with previous studies of the covalent binding of this agent to immobilized sulfhydryl groups [Kedderis et al. (1988) Arch. Biochem. Biophys. 262, 40-48]. Studies of the covalent binding of variously radiolabeled ronidazole molecules to DNA suggested that the imidazole ring was intact while greater than 80% of the 2-carbamoyl group and the C4 proton were not present in the DNA adduct. Studies of both the chemical and human hepatic microsomal reduction of [4-3H]metronidazole demonstrated that covalent binding occurred with the stoichiometric loss of this label, implicating binding at the C4 position. These results suggest that the reductive activation of 5-nitroimidazoles generally proceeds via four-electron reduction to form hydroxylamines followed by nucleophilic attack at C4.
Previous studies indicated that the teichoic acid isolated from strains of Streptococcus sanguis was group specific and defined the Lancefield group H streptococci. To determine the specific antigenic determinants, the antigen was extracted from a group H streptococcus (ATCC 903) by the phenol-water method and purified by column chromatography. The isolated antigen had a glycerol/ phosphate/glucose molar ratio of 1:0.9:0.3; the lipid concentration was 7.6% of its dry Weight. No nucleic acids were detected, and amino acids constituted approximately 2% of the dry weight. The minimum concentration of antigen required to sensitize erythrocytes for hemagglutination with a 1:1,P00 dilution of either group H antiserum or antiteichoic acid serum was 0.02 ,ug/ml. Hemaggluti-925 on July 16, 2020 by guest
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.