Meteorological parameters were crucial and effective factors in past infectious diseases, like influenza and severe acute respiratory syndrome (SARS), etc. The present study targets to explore the association between the coronavirus disease 2019 (COVID-19) transmission rates and meteorological parameters. For this purpose, the meteorological parameters and COVID-19 infection data from 28th March 2020 to 22nd April 2020 of different states of India have been compiled and used in the analysis. The gradient boosting model (GBM) has been implemented to explore the effect of the minimum temperature, maximum temperature, minimum humidity, and maximum humidity on the infection count of COVID-19. The optimal performance of the GBM model has been achieved after tuning its parameters. The GBM results in the best accuracy of R 2 = 0.95 for prediction of active cases in Maharashtra, and R 2 = 0.98 for prediction of recovered cases of COVID-19 in Kerala and Rajasthan, India.
Stochastic time series analysis of high-frequency stock market data is a very challenging task for the analysts due to the lack availability of efficient tool and techniques for big data analytics. This has opened the door of opportunities for the developer and researcher to develop intelligent and machine learning based tools and techniques for data analytics. This paper proposed an ensemble for stock market data prediction using three most prominent machine learning based techniques. The stock market dataset with raw data size of 39364 KB with all attributes and processed data size of 11826 KB having 872435 instances. The proposed work implements an ensemble model comprises of Deep Learning, Gradient Boosting Machine (GBM) and distributed Random Forest techniques of data analytics. The performance results of the ensemble model are compared with each of the individual methods i.e. deep learning, Gradient Boosting Machine (GBM) and Random Forest. The ensemble model performs better and achieves the highest accuracy of 0.99 and lowest error (RMSE) of 0.1.
Designing a system for analytics of high-frequency data (Big data) is a very challenging and crucial task in data science. Big data analytics involves the development of an efficient machine learning algorithm and big data processing techniques or frameworks. Today, the development of the data processing system is in high demand for processing high-frequency data in a very efficient manner. This paper proposes the processing and analytics of stochastic high-frequency stock market data using a modified version of suitable Gradient Boosting Machine (GBM). The experimental results obtained are compared with deep learning and Auto-Regressive Integrated Moving Average (ARIMA) methods. The results obtained using modified GBM achieves the highest accuracy (R2 = 0.98) and minimum error (RMSE = 0.85) as compared to the other two approaches.
The COVID-19 has affected and threatened the world health system very critically throughout the globe. In order to take preventive actions by the agencies in dealing with such a pandemic situation, it becomes very necessary to develop a system to analyze the impact of environmental parameters on the spread of this virus. Machine learning algorithms and artificial Intelligence may play an important role in the detection and analysis of the spread of COVID-19. This paper proposed a twinned gradient boosting machine (GBM) to analyze the impact of environmental parameters on the spread, recovery, and mortality rate of this virus in India. The proposed paper exploited the four weather parameters (temperature, humidity, atmospheric pressure, and wind speed) and two air pollution parameters (PM2.5 and PM10) as input to predict the infection, recovery, and mortality rate of its spread. The algorithm of the GBM model has been optimized in its four distributions for best performance by tuning its parameters. The performance of the GBM is reported as excellent (where R2 = 0.99) in training for the combined dataset comprises all three outcomes i.e. infection, recovery and mortality rates. The proposed approach achieved the best prediction results for the state, which is worst affected and highest variation in the atmospheric factors and air pollution level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.