Deep learning provides the healthcare industry with the ability to analyse data at exceptional speeds without compromising on accuracy. These techniques are applicable to healthcare domain for accurate and timely prediction. Convolutional neural network is a class of deep learning methods which has become dominant in various computer vision tasks and is attracting interest across a variety of domains, including radiology. Lung diseases such as tuberculosis (TB), bacterial and viral pneumonias, and COVID-19 are not predicted accurately due to availability of very few samples for either of the lung diseases. The disease could be easily diagnosed using X-ray or CT scan images. But the number of images available for each of the disease is not as equally as other resulting in imbalance nature of input data. Conventional supervised machine learning methods do not achieve higher accuracy when trained using a lesser amount of COVID-19 data samples. Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset. Data augmentation helped reduce overfitting when training a deep neural network. The SMOTE (Synthetic Minority Oversampling Technique) algorithm is used for the purpose of balancing the classes. The novelty in this research work is to apply combined data augmentation and class balance techniques before classification of tuberculosis, pneumonia, and COVID-19. The classification accuracy obtained with the proposed multi-level classification after training the model is recorded as 97.4% for TB and pneumonia and 88% for bacterial, viral, and COVID-19 classifications. The proposed multi-level classification method produced is ~8 to ~10% improvement in classification accuracy when compared with the existing methods in this area of research. The results reveal the fact that the proposed system is scalable to growing medical data and classifies lung diseases and its sub-types in less time with higher accuracy.
Graphical Abstract
With the advent of machine learning, numerous approaches have been proposed to forecast stock prices. Various models have been developed to date such as Recurrent Neural Networks, Long Short-Term Memory, Convolutional Neural Network sliding window, etc., but were not accurate enough. Here, the aim is to predict the price of a stock and compare the results obtained using three major algorithms namely Kalman filters, XGBoost and ARIMA. Kalman filters are recursive and use a feedback mechanism to perform error correction. This correction makes them best suited for making accurate predictions as they can factor in the market volatility, whereas XGBoost is a promising technique for datasets that are nonlinear and can gather knowledge by detecting patterns and relationships in the data. XGBoost is also capable of capturing the time dependency of features efficiently. ARIMA refers to an Auto Regressive Integrated Moving Average model that has become very popular in recent times. It is mostly used on time series data and works by eliminating its stationarity. Finally, a hybrid model combining Kalman filters and XGBoostis discussed and a comparison of the results of each of the four models, are made to provide a better clarity for making investments by forecasting the price of a stock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.