The analysis of large-scale structures from highly refined unsteady simulations becomes challenging as the mesh resolution increases, and some new tools must be developed in order to perform their identification and extraction. A solution is to use filters to remove the smallest flow motions. High-order filters, characterized by their good selectivity properties, were implemented in an unstructured finite-volume solver for large-eddy simulation, and their ability to extract structures of a given scale was tested on canonical flows. Then, these filters were applied on an aeronautical swirl burner with a complex geometry. The results show that novel high-order filters are able to extract the precessing vortex core from this realistic turbulent flow. High-order filtering enables to study in detail this large-scale structure and to gain insight into the dynamic of swirl flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.