Abstract. The Hardy-Littlewood prime k-tuples conjecture has long been thought to be completely unapproachable with current methods. While this sadly remains true, startling breakthroughs of Zhang, Maynard, and Tao have nevertheless made significant progress toward this problem. In this work, we extend the Maynard-Tao method to both number fields and the function field F q (t).
A positive integer n is called ϕ-practical if the polynomial X n − 1 has a divisor in Z[X] of every degree up to n. In this paper, we show that the count of ϕ-practical numbers in [1, x] is asymptotic to Cx/ log x for some positive constant C as x → ∞.
The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum determines the commensurability class of the 2-manifold (resp., 3-manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3-manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest.
L'accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
cedramArticle mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.