Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms that grow in evaporative cooling water systems, but can adversely affect the environment and human health. However, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years to inhibit microorganisms with excellent results. The water chemistry method concentrates natural minerals in highly-softened water to produce elevated pH and dissolved solids, while maintaining low calcium and magnesium content. The method provides further benefits in water conservation, and generates a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This report describes the antimicrobial effects of these chemistry modifications in the cooling water environment and the resultant collective inhibition of microbes, biofilm, and pathogen growth. This article also presents a novel perspective of parasitic microbiome functional relationships, including “Trojan Protozoans” and biofilms, and the function of polyvalent metal ions in the formation and inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Concurrently, scientists have concluded that discharge of antibacterial agents plays a key role in development of pathogen resistance to antimicrobials as well as antibiotics. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner.
Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms that grow in evaporative cooling water systems, but can adversely affect the environment and human health. However, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years to inhibit microorganisms with excellent results. The water chemistry method concentrates natural minerals in highly-softened water to produce elevated pH and dissolved solids, while maintaining low calcium and magnesium content. The method provides further benefits in water conservation, and generates a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This report describes the antimicrobial effects of these chemistry modifications in the cooling water environment and the resultant collective inhibition of microbes, biofilm, and pathogen growth. This article also presents a novel perspective of parasitic microbiome functional relationships, including "Trojan Protozoans" and biofilms, and the function of polyvalent metal ions in the formation and inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Concurrently, scientists have concluded that discharge of antibacterial agents plays a key role in development of pathogen resistance to antimicrobials as well as antibiotics. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner.
Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms in evaporative cooling water systems, but these agents can adversely affect the environment and human health. Alternatively, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years with excellent results. The tower water chemistry method concentrates natural salts in highly-softened water to produce elevated pH and dissolved solids, with low calcium and magnesium. This practice conserves water while generating only a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This review presents a novel perspective of natural antimicrobial chemistry for inhibiting parasitic microbiome functional relationships within the bio-triad of Legionella outbreaks, "Trojan Protozoans" and biofilms. The review further examines practical application and function of polyvalent metal ions in the inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Discharge of antibacterial agents also contributes to development of pathogen resistance. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner.
Application of toxic antibacterial agents is considered necessary to control prevalent fresh water microorganisms in evaporative cooling water systems, but these agents can adversely affect the environment and human health. Alternatively, natural antibacterial water chemistry has been applied in industrial cooling water systems for over 10 years with excellent results. The tower water chemistry method concentrates natural salts in highly-softened water to produce elevated pH and dissolved solids, with low calcium and magnesium. This practice conserves water while generating only a small volume of non-toxic natural salt concentrate for cost efficient separation and disposal if required. This review presents a novel perspective of natural antimicrobial chemistry for inhibiting parasitic microbiome functional relationships within the bio-triad of Legionella outbreaks, "Trojan Protozoans" and biofilms. The review further examines practical application and function of polyvalent metal ions in the inhibition of biofilms. Reducing global dependence on toxic antibacterial agents discharged to the environment is an emerging concern due to their impact on the natural microbiome, plants, animals and humans. Discharge of antibacterial agents also contributes to development of pathogen resistance. Use of natural antibacterial chemistry can play a key role in managing the cooling water environment in a more ecologically sustainable manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.