Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks. Index Terms-Cloud computing; task scheduling; whale optimization algorithm; metaheuristics; multi-objective optimization I. INTRODUCTION W Ith the ubiquitous growth of Internet access and big data, cloud computing becomes more and more popular in today's business world [1]. Compared to other distributed computing techniques (e.g., cluster and grid computing), cloud computing has provided an elastic and scalable way on delivering services to consumers. Namely, consumers do not need to possess the underlying technology and they can make use of computing resources and platforms in a pay-per-use fashion [2], [3]. The basic mechanism of cloud computing is to dispatch computing tasks to a resource pooling constituting of a
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
ABSTRACTThe performance of joins in parallel database management systems is critical for data intensive operations such as querying. Since data skew is common in many applications, poorly engineered join operations result in load imbalance and performance bottlenecks. State-of-the-art methods designed to handle this problem offer significant improvements over naive implementations. However, performance could be further improved by removing the dependency on global skew knowledge and broadcasting. In this paper, we propose PRPQ (partial redistribution & partial query), an efficient and robust join algorithm for processing large-scale joins over distributed systems. We present the detailed implementation and a quantitative evaluation of our method. The experimental results demonstrate that the proposed PRPQ algorithm is indeed robust and scalable under a wide range of skew conditions. Specifically, compared to the state-ofart PRPD method, we achieve 16% − 167% performance improvement and 24% − 54% less network communication under different join workloads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.