c-Myc (Myc) plays an important role in normal liver development and tumorigenesis. We show here that Myc is pathologically activated in and essential for promoting human hepatocellular carcinoma (HCC). Myc induces HCC through a novel, microRNA (miRNA)-mediated feedback loop comprised of miR-148a-5p, miR-363-3p, and ubiquitin-specific protease 28 (USP28). Myc directly binds to conserved regions in the promoters of the two miRNAs and represses their expression. miR-148a-5p directly targets and inhibits Myc, whereas miR-363-3p destabilizes Myc by directly targeting and inhibiting USP28. Inhibition of miR-148a-5p or miR-363-3p induces hepatocellular tumorigenesis by promoting G1 to S phase progression, whereas activation of them has the opposite effects. The Myc-miRNA feedback loop is dysregulated in human HCC. Conclusion: These results define miR-148a-5p and miR-363-3p as negative regulators of Myc, thus revealing their heretofore unappreciated roles in hepatocarcinogenesis.
IFN regulatory factor (IRF) 10 belongs to the IRF family and exists exclusively in birds and fish. Most IRFs have been identified as critical regulators in the IFN responses in both fish and mammals; however, the role of IRF10 is unclear. In this study, we identified IRF10 in zebrafish (Danio rerio) and found that it serves as a negative regulator to balance the innate antiviral immune responses. Zebrafish IRF10 (DrIRF10) was induced by intracellular polyinosinic:polycytidylic acid in ZF4 (zebrafish embryo fibroblast-like) cells. DrIRF10 inhibited the activation of zebrafish IFN1 (DrIFN1) and DrIFN3 promoters in epithelioma papulosum cyprinid cells in the presence or absence of polyinosinic:polycytidylic acid stimulation through direct interaction with the IFN promoters, and this inhibition was also shown to block IFN signaling. Overexpression of DrIRF10 was able to abolish the induction of DrIFN1 and DrIFN3 mediated by the retinoic acid–inducible gene I–like receptors. In addition, functional domain analysis of DrIRF10 showed that either the DNA binding domain or the IRF association domain is sufficient for its inhibitory activity for IFN signaling. Lastly, overexpression of DrIRF10 decreased the transcription level of several IFN-stimulated genes, resulting in the susceptibility of host cells to spring viremia of carp virus infection. Collectively, these data suggest that DrIRF10 inhibits the expression of DrIFN1 and DrIFN3 to avoid an excessive immune response, a unique regulation mechanism of the IFN responses in lower vertebrates.
Cathelicidin antimicrobial peptides (CAMPs) represent a crucial component of the innate immune system in vertebrates. Although widely studied in mammals, little is known about the structure and function of fish CAMPs. Further to the previous findings, two more cathelicidin genes and multiple transcripts from rainbow trout were identified in the present study. Interestingly, we found that trout have evolved energy-saving forms of cathelicidins with the total deletion of the characteristic cathelin-like domain. Sequence analysis revealed that salmonid CAMPs have formed a special class of antimicrobial peptides in vertebrates with three distinctive hallmarks: the N terminus is intensified by positive charges, the central region consists of repetitive motifs based on RPGGGS, and the C terminus is lowly charged. Immunofluorescence localization of trout CAMPs demonstrated that these peptides expressed mainly at the mucosal layer of gut. Meanwhile, signals around sinusoids were also detected in head kidney. Moreover, the biological activities of trout CAMPs were proved to be mediated by the N terminus. Additionally, the repetitive motifs characteristically existing in Salmonidae increased the structural flexibilities of peptides and further increased the antibacterial and IL-8–stimulating activities. Unlike most α helical and cytotoxic mammalian CAMPs, trout CAMPs, mainly consisting of β-sheet and random coil, exhibited no cytotoxic activities. The distinctive structural features of trout CAMPs provide new insights into the understanding of the evolution of CAMPs in vertebrates. Moreover, the high bacterial membrane selectivity of trout CAMPs will help to design excellent peptide antibiotics.
Dysregulation of c-Myc (Myc) has been shown to contribute to progression of hepatocellular carcinoma, however, the detailed molecular mechanism remains poorly understood. Here, we report that Myc binds to the Aurora kinase A (Aurka) promoter and induces expression of Aurka in HCC cells. Increased expression of Aurka correlates with that of Myc in HCC. Nuclear accumulation of Aurka was confirmed by subcellular protein fractionation and immunoblot experiments in HCC cells. Myc inhibition decreases the nuclear accumulation of Aurka in HCC cells. Also Aurka accumulating in the nucleus up-regulates Myc transcription by binding the Myc promoter containing the highly conserved CCCTCCCCA in the NHE region of the CpG islands. Inhibition of Myc or Aurka diminishes the malignant phenotypes of HCC cells by down-regulating some common target genes. Also Aurka and Myc mediates the effects of each other, at least partially, on proliferation, anchorage-independent soft agar growth, and ATP production. Blocking Aurka in an orthotopic model significantly impairs tumor growth in mice. These results identify a Myc-Aurka feedback loop in which Myc and Aurka regulate expression of each other at the transcriptional level and both play an important role in hepatocarcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.