High-precision line-of-sight extraction technique is essential for autonomous optical navigation during the Mars approach phase. To support future Mars exploration missions, an optical image simulation system is a necessary ground verification facility for Mars image generation and line-of-sight extraction algorithm tests. In this paper, an optical image generation procedure is first developed according to projection relationships, reference flight profiles and camera parameters. Next, a hybrid image processing and line-of-sight extraction algorithm is proposed through objective segmentation and rough edge detection, pseudo-edge elimination and precise edge detection, and robust ellipse fitting. Finally, an optical image simulation system is established, and the experimental results show that the proposed procedure can effectively simulate the optical image in the field-of-view of a Mars spacecraft, and the hybrid extraction algorithm can obtain high-precision Mars centroid information. KEYWORDS 1. Autonomous optical navigation. 2. Simulated image generation. 3. Line-of-sight extraction. 4. Sub-pixel edge detection. 5. Robust ellipse fitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.