Hoa Binh is the largest reservoir in Vietnam. It has been operated since 1990 with the main purposes of flood control in the Red River basin and hydropower generation. Because these different purposes always cause conflicts and disputes during the flood season, it is desirable to improve the current operational regulations of the reservoir. In this paper, the operation rules of the reservoir are analysed by applying the Mike 11 river modelling tool. The model set up includes the main rivers and tributaries of the Red River basin and a logical decision tree defining the reservoir regulation. These strategies define the reservoir release as function of the time of the year, the actual reservoir stage, and the water level forecast at Hanoi. A data set consisting of twenty years of flood season data was used to evaluate the control strategies with respect to flood control and hydropower generation. The reservoir operation using the complete control system and the current as well as alternative regulation strategies has been evaluated and compared to the actual operation practice. Results showed that the implemented control system performs better than the actual operation. In addition, lowering the target downstream water level for flood control improves the operation with respect to both flood protection and hydropower Water Resour Manage (2008) 22:457-472 generation. An alternative strategy where the target water level in the reservoir is increased can improve hydropower generation but at the expense of a reduced flood protection.
Multi-purpose reservoirs often have to be managed according to conflicting objectives, which requires efficient tools for trading-off the objectives. This paper proposes a multi-objective simulation-optimisation approach that couples off-line rule curve optimisation with on-line real-time optimisation. First, the simulation-optimisation framework is applied for optimising reservoir operating rules. Secondly, real-time and forecast information is used for on-line optimisation that focuses on short-term goals, such as flood control or hydropower generation, without compromising the deviation of the long-term objectives from the optimised rule curves.The method is illustrated for optimisation of the Hoa Binh reservoir in Vietnam. The approach is proven efficient to trade-off conflicting objectives. Selected by a Pareto optimisation method, the preferred optimum is able to mitigate the floods in the downstream part of the Red River, and at the same time to increase hydropower generation and to save water for the dry season. The real-time optimisation procedure further improves the efficiency of the reservoir operation and enhances the flexibility for the decision-making. Finally, the quality of the forecast is addressed.The results illustrate the importance of a sufficient forecast lead time to start pre-releasing water In flood situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.