The mixed caesium and formamidinium lead triiodide perovskite system (Cs1-xFAxPbI3) in the form of quantum dots (QDs) offers a new pathway towards stable perovskite-based photovoltaics and optoelectronics. However, it remains challenging to synthesize such multinary QDs with desirable properties for high-performance QD solar cells (QDSCs). Here we report an effective ligand-assisted cation exchange strategy that enables controllable synthesis of Cs1-xFAxPbI3 QDs across the whole composition range (x: 0-1), which is inaccessible in large-grain polycrystalline thin films. The surface ligands play a key role in driving the cross-exchange of cations for the rapid formation of Cs1-xFAxPbI3 QDs with suppressed defect density. The hero Cs0.5FA0.5PbI3 QDSC achieves a certified record power conversion efficiency (PCE) of 16.6% with negligible hysteresis. We further demonstrate that QD devices exhibit substantially enhanced photostability compared to their thin film counterparts because of the suppressed phase segregation, retaining 94% of the original PCE under continuous 1-sun illumination for 600 hours.
The prospective utilization of nanoscale superconductors as micro/nano coils or circuits with superior current density and no electrical resistive loss in next-generation electronics or electromagnetic equipment represents a fascinating opportunity for new microsystem technologies.Here, we developed a family of superconducting liquid metals (Ga-In-Sn alloys) and their nanodroplets toward printable and stretchable superconducting micro/nanoelectronics. By tuning the composition of liquid metals, the highest superconducting critical temperature (T c ) in this family can be modulated and achieved as high as 6.6 K. The liquid metal nanodroplets retain their bulk superconducting properties, and can be easily dispersed in different solvents as inks. The printable and stretchable superconducting micro/nano coils, circuits and electrodes have been fabricated by inkjet printer or laser etching by using superconducting nanodroplets inks. This novel superconducting system greatly promotes the commercial utilization of superconductors into advanced flexible micro/nano electronic devices, and offers a new platform for developing more application with superconductors.
Engineering the electronic structure of BiOCl through the creation of oxygen vacancies can be a good strategy to enhance the photooxidation activity of BiOCl.
Development of effective, stable, and economic electrocatalysts is critical for further implementation of fuel cells, water electrolysis, and metal–air batteries in clean energy conversion technologies. As a subfamily of metal–organic frameworks (MOFs), zeolitic imidazolate frameworks (ZIFs) possess the characteristics of both MOFs and zeolites, showing highly porous structures, large surface area, and open catalytic active sites. This review presents materials design strategies for constructing improved electrocatalysts based on ZIF precursors/templates, with special emphasis on the varieties of derivatives, controllable building of active sites, the construction of macroscopic structure, and the favored electrocatalytic reactions based on these materials. These ZIF‐derived N‐doped carbon‐based composites or compounds have exhibited remarkable activity and stability for a broad electrocatalysis application, displaying great potential to replace noble‐metal‐based catalysts. The challenges and perspectives regarding ZIF‐derived electrocatalysts are also discussed for better development of ZIF‐derived electrocatalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.