We have developed a simple procedure based on reassociation kinetics that can reduce effectively the high variation in abundance among the clones of a cDNA library that represent individual mRNA species. For this normalization, we used as a model system a library of human infant brain cDNAs that were cloned directionally into a phagemid vector and, thus, could be easily converted into single-stranded circles. After controlled primer extension to synthesize a short complementary strand on each circular template, melting and reannealing of the partial duplexes at relatively low Cot, and hydroxyapatite column chromatography, unreassodated circles were recovered from the flow through fraction and electroporated into bacteria, to propagate a normalized library without a requirement for subcloning steps. An evaluation of the extent of normalization has indicated that, from an extreme range of abundance of 4 orders of magnitude in the original library, the frequency of occurrence of any done exmned in the normalized library was brought within the narrow range of only 1 order of magnitude. feasible task). Finally, by increasing the frequency of occurrence of rare cDNA clones while decreasing simultaneously the percentage of abundant cDNAs, normalization can expedite significantly the development of expressed sequence databases by random sequencing of cDNAs.Although cDNA library normalization could be achieved by saturation hybridization to genomic DNA (6), this approach is impractical, since it would be extremely difficult to provide saturating amounts of the rarer cDNA species to the hybridization reaction. The alternative is the use of reassociation kinetics: assuming that cDNA reannealing follows second-order kinetics, rarer species will anneal less rapidly and the remaining single-stranded fraction of cDNA will become progressively normalized during the course of the reaction (6-8). As we report here, we have used this kinetic principle to develop a method for normalization of a directionally cloned cDNA library that has significant advantages over two previously reported similar procedures (refs. 7 and 8; see Results and Discussion).
Implantation and placentation are critical steps for successful pregnancy. The pig has a non-invasive placenta and the uterine luminal epithelium is intact throughout pregnancy. To better understand the regulation mechanisms in functions of endometrium at three certain gestational stages that are critical for embryo/fetal loss in pigs, we characterized microRNA (miRNA) expression profiles in the endometrium on days 15 (implantation period), 26 (placentation period) and 50 (mid-gestation period) of gestation. The differentially expressed miRNAs across gestational days were detected and of which, 65 miRNAs were grouped into 4 distinct categories according to the similarities in their temporal expression patterns: (1) categories A and B contain majority of miRNAs (51 miRNAs, such as the miR-181 family) that were down- or up-regulated between gestational days 15 and 26, respectively; (2) categories C and D (14 miRNAs) consist miRNAs that were down- or up-regulated between gestational days 26 and 50, respectively. The expression patterns represented by eleven miRNAs were validated by qPCR. The majority of miRNAs were in categories A and B, suggesting that these miRNAs were involved in regulation of embryo implantation and placentation. The pathway analysis revealed that the predicted targets were involved in several pathways, such as focal adhesion, cell proliferation and tissue remolding. Furthermore, we identified that genes well-known to affect embryo implantation in pigs, namely SPP1, ITGB3 and ESR1, contain the miR-181a or miR-181c binding sites using the luciferase reporter system. The present study revealed distinctive miRNA expression patterns in the porcine endometrium during the implantation, placentation or mid-gestation periods. Additionally, our results suggested that miR-181a and miR-181c likely play important roles in the regulation of genes and pathways that are known to be involved in embryo implantation and placentation in pigs.
Bumblebees are a diverse group of globally important pollinators in natural ecosystems and for agricultural food production. With both eusocial and solitary life-cycle phases, and some social parasite species, they are especially interesting models to understand social evolution, behavior, and ecology. Reports of many species in decline point to pathogen transmission, habitat loss, pesticide usage, and global climate change, as interconnected causes. These threats to bumblebee diversity make our reliance on a handful of well-studied species for agricultural pollination particularly precarious. To broadly sample bumblebee genomic and phenotypic diversity, we de novo sequenced and assembled the genomes of 17 species, representing all 15 subgenera, producing the first genus-wide quantification of genetic and genomic variation potentially underlying key ecological and behavioral traits. The species phylogeny resolves subgenera relationships while incomplete lineage sorting likely drives high levels of gene tree discordance. Five chromosome-level assemblies show a stable 18-chromosome karyotype, with major rearrangements creating 25 chromosomes in social parasites. Differential transposable element activity drives changes in genome sizes, with putative domestications of repetitive sequences influencing gene coding and regulatory potential. Dynamically evolving gene families and signatures of positive selection point to genus-wide variation in processes linked to foraging, diet and metabolism, immunity and detoxification, as well as adaptations for life at high altitudes. Our study reveals how bumblebee genes and genomes have evolved across the Bombus phylogeny and identifies variations potentially linked to key ecological and behavioral traits of these important pollinators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.