Alzheimer's disease (AD) is a debilitating disorder that manifests with amyloid beta plaque deposition, neurofibrillary tangles, neuronal loss, and severe cognitive impairment. Although much effort has been made to decipher the pathogenesis of this disease, the mechanisms causing these detrimental outcomes remain obscure. Over the past few decades, neuroepigenetics has emerged as an important field that, among other things, explores how reversible modifications can change gene expression to control behavior and cognitive abilities. Among epigenetic modifications, DNA methylation requires further elucidation for the conflicting observations from AD research and its pivotal role in learning and memory. In this review, we focus on the essential components of DNA methylation, the effects of aberrant methylation on gene expressions in the amyloidogenic pathway and neurochemical processes, as well as memory epigenetics in Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.