The Turán number of a graph H, ex(n,H), is the maximum number of edges in any graph of order n that does not contain an H as a subgraph. A graph on 2k+1 vertices consisting of k triangles that intersect in exactly one common vertex is called a k‐fan, and a graph consisting of k cycles that intersect in exactly one common vertex is called a k‐flower. In this article, we determine the Turán number of any k‐flower containing at least one odd cycle and characterize all extremal graphs provided n is sufficiently large. Erdős, Füredi, Gould, and Gunderson determined the Turán number for the k‐fan. Our result is a generalization of their result. The addition aim of this article is to draw attention to a powerful tool, the so‐called progressive induction lemma of Simonovits.
The Turán number of a graph H, ex(n, H), is the maximum number of edges in a simple graph of order n which does not contain H as a subgraph. Let k · P 3 denote k disjoint copies of a path on 3 vertices. In this paper, we determine the value ex(n, k ·P 3 ) and characterize all extremal graphs. This extends a result of
The circumference of a graph is the length of a longest cycle of it. We determine the maximum number of copies of $K_{r,s}$, the complete bipartite graph with classes sizes $r$ and $s$, in 2-connected graphs with circumference less than $k$. As corollaries of our main result, we determine the maximum number of copies of $K_{r,s}$ in $n$-vertex $P_{k}$-free and $M_k$-free graphs for all values of $n$, where $P_k$ is a path on $k$ vertices and $M_k$ is a matching on $k$ edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.