[1] The Red River originates from SW China and SE Tibet and has a total length >1000 km. In this study, we present new U-Pb dating and Hf isotopic analysis of zircon grains, from both modern and paleoriver sands in order to constrain the provenance of the modern river and to decipher drainage evolution through time. Our data show that the Yangtze and Songpan Garze blocks are the most important sources for sediment, although this material is mostly reworked via younger sedimentary rocks in the upper reaches of the Red River. Sands in the Da River and to a lesser extent the Lo River have zircon ages indicating that they are minor contributors to the net flow, consistent with rock uplift, which is strongest in the upper reaches of the Red River, rather than precipitation being the primary control on erosion. Sediments eroded from the metamorphic rocks along the Red River Fault Zone appear to have made a greater contribution during the Miocene. Zircon ages suggest that the Red River flowed north of the Day Nui Con Voi in the Middle-Late Miocene. The Red River appears to have had a largely stable provenance since at least the Late Miocene. Upper Miocene sedimentary rocks NE of the Red River indicate the presence of a separate, large river in the Late Miocene. Hf isotope data indicate that the Irrawaddy River was never part of the Red River system. Although we do not exclude the Salween, Mekong, and Yangtze rivers from having been part of the Red River, any connection must have been pre-Middle Miocene.
We test the hypothesis of a major Paleogene river draining the SE Tibetan Plateau and the central modern Yangtze Basin that then flowed south to the South China Sea. We test this model using U‐Pb dated detrital zircon grains preserved in Paleogene sedimentary rocks in northern Vietnam and SW China. We applied a series of statistical tests to compare the U‐Pb age spectra of the rocks in order to highlight differences and similarities between them and with potential source bedrocks. Monte Carlo mixing models imply that erosion was dominantly derived from the Indochina and Songpan‐Garzê Blocks and to a lesser extent the Yangtze Craton. Some of the zircon populations indicate local erosion and sedimentation, but others show close similarity both within northern Vietnam, as well as more widely in the Eocene Jianchuan, Paleocene‐Oligocene Simao, and Oligocene‐Miocene Yuanjiang basins of China. The presence of younger (<200 Ma) zircons from the Qamdo Block of Tibet is less easily explicable in terms of recycling by erosion of older sedimentary rocks and implies a regional drainage linking SE Tibet and the South China Sea in the Late Eocene‐Oligocene. Detrital zircons from offshore in the South China Sea showed initial local erosion, but with a connection to a river stretching to SE Tibet in the Late Oligocene. A change from regional to local sources in the Early Miocene in the Yuanjiang Basin indicates the timing of disruption of the old drainage driven by regional plateau uplift.
The Song Hong-Yinggehai (SH-Y) and Qiongdongnan (Qi) basins together form one of the largest Cenozoic sedimentary basins in SE Asia. Here we present new records based on the analysis of seismic data, which we compare to geochemical data derived from cores from Ocean Drilling Program (ODP) Site 1148 in order to derive proxies for continental weathering and thus constrain summer monsoon intensity.The SH-Y Basin started opening during the Late Paleocene–Eocene. Two inversion phases are recognized to have occurred at c. 34 Ma and c. 15 Ma. The Qi Basin developed on the northern, rifted margin of South China Sea, within which a large canyon developed in a NE–SW direction.Geochemical and mineralogical data show that chemical weathering has gradually decreased in SE Asia after c. 25 Ma, whereas physical erosion became stronger, especially after c. 12 Ma. Summer monsoon intensification drove periods of faster erosion after 3–4 Ma and from 10–15 Ma, although the initial pulse of eroded sediment at 29.5–21 Ma was probably triggered by tectonic uplift because this precedes monsoon intensification at c. 22 Ma. Clay mineralogy indicates more physical erosion together with high sedimentation rates after c. 12 Ma suggesting a period of strong summer monsoon in the Mid-Miocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.