A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1-FER-RIPK interactions may thus represent a mechanism for peptide signaling in plants.plant hormone | feronia | phosphorylation
Genes that provide resistance to fungi and/or bacteria usually reduce plant growth and ultimately affect grain yield. Thus, crop breeding programs need to find genetic resources that balance disease resistance with growth. The receptor kinase FERONIA regulates cell growth and survival in Arabidopsis. Here, we investigate, in rice, the role of members of the FERONIA-like receptor (FLR) gene family in the balance between growth and the response to the fungal pathogen Magnaporthe oryzae (Pyricularia oryzae), which causes the most devastating disease in rice. We carried out genome-wide gene expression and functional screenings in rice via a gene knockout strategy, and we successfully knocked out 14 FLR genes in rice. Using these genetic resources, we found that mutations in the FLR2 and FLR11 genes provide resistance to rice blast without a profound growth penalty. Detailed analyses revealed that FLR2 mutation increased both defense-related gene expression and M. oryzae-triggered production of reactive oxygen species. Thus, our results highlight novel genetic tools for studying the underlying molecular mechanisms of enhancing disease resistance without growth penalty.
Cell expansion is coordinated by several cues, but available energy is the major factor determining growth. Receptor protein kinase FERONIA (FER) is a master regulator of cell expansion, but the details of its control mechanisms are not clear. Here we show that FER interacts with cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1 and GAPC2), that catalyzes a key reaction in glycolysis, which contributes to energy production. When there is an FER deficiency, there are corresponding decreases in the enzyme activity of GAPDH and increased amounts of starch. More importantly, gapc1/2 mutants mimic fer4 mutants. These data indicate that FER regulated starch content is an evolutionarily conserved function in plants that connects the cell expansion and energy metabolism pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.