The present study aimed to increase the in vitro dissolution rate of lacidipine, a poorly water-soluble drug, by formulating amorphous solid dispersions (ASDs) using hot-melt extrusion (HME). Differential scanning calorimetry, powder X-ray diffraction, polarized light microscopy, and Fourier transform infrared were used to characterize the optimal formulations and evaluate the physical stability for the stress test. Film-casting method and hot-stage microscopy were applied to study the miscibility of lacidipine and the drug carriers. In vitro dissolution tests were conducted as the final evaluation index. The optimal formulations were successfully obtained with Soluplus and PVP VA64 at a drug/carrier ratio of 1:10 (w/w), Fourier transform infrared studies revealed the hydrogen bonding between drug and polymers, and in vitro dissolution rates of the optimal formulations were extremely enhanced compared to bulk lacidipine and physical mixtures, similar with that of the commercial tablet. The ASD formulated with Soluplus showed better physical stability than that with PVP VA64. A strong hydrogen bonding and good drug-polymer miscibility were essential to hinder the recrystallization of lacidipine ASDs. In conclusion, the lacidipine ASD formulated with Soluplus showed a significant increase in in vitro dissolution rate and favorable physical stability in the stress test.
Bergenin (BN) is a Biopharmaceutics Classification System class IV (BCS IV) drug with poor hydrophilicity and lipophilicity and is potentially eliminated by the efflux function of P-glycoprotein (P-gp). These factors may explain its low oral bioavailability. In the present study, a BN-phospholipid complex solid dispersion (BNPC-SD) was prepared by solvent evaporation and characterized based on differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, infrared diffraction, solubility, octanol-water partition coefficient, and in vitro dissolution. To investigate how P-gp can inhibit BN absorption in vivo, the P-gp inhibitor verapamil was co-administered with BNPC-SD to Sprague Dawley rats. By in situ single-pass intestinal perfusion, the membrane permeability of BN from BNPC-SD was higher than that of BN given alone and was improved further by co-administered verapamil. A pharmacokinetics study was done in Sprague Dawley rats, with plasma BN levels estimated by high-performance liquid chromatography. C and AUC values for BN were significantly higher for BNPC-SD than for BN given alone and were increased further by verapamil. Thus, the relative oral bioavailability of BNPC-SD as well as BNPC-SD co-administered with verapamil was 156.33 and 202.46%, respectively, compared with the value for BN given alone. These results showed that BNPC-SD can increase the oral bioavailability of BCS IV drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.