BackgroundPollen development in flowering plants requires strict control of the gene expression program and genetic information stability by mechanisms possibly including the miRNA pathway. However, our understanding of the miRNA pathway in pollen development remains limited, and the dynamic profile of miRNAs in developing pollen is unknown.ResultsUsing next-generation sequencing technology, we pyrosequenced small RNA populations from rice uninucleate microspores to tricellular pollen and control sporophytic tissues at the genome-wide level. We identified 292 known miRNAs, including members of all 20 families conserved in plants, and 75 novel miRNAs. Of the 292 known miRNAs, 202 were expressed, with 103 enriched, in developing pollen. More than half of these novel miRNAs displayed pollen-or stage-specific expression. Furthermore, analyzing the 367 miRNAs and their predicted targets indicated that correlation in expression profiles of pollen-enriched known miRNAs and their targets significantly differs from that of sporophyte-enriched known miRNAs and their targets in some functional terms, while novel miRNAs appeared to negatively regulate their targets. Importantly, gene ontology abundance analysis demonstrated chromatin assembly and disassembly was important in the targets of bicellular pollen-expressed novel miRNAs. Principal component analysis revealed pollen of all three stages was discriminated from sporophytes, largely because of the novel and non-conserved known miRNAs.ConclusionsOur study, for the first time, revealed the differences in composition and expression profiles of miRNAs between developing pollen and sporophytes, with novel and non-conserved known miRNAs the main contributors. Our results suggest the important roles of the miRNA pathway in pollen development.
Twenty-one informative microsatellite loci were used to assess and compare the genetic diversity among Pisum genotypes sourced from within and outside China. The Chinese germplasm comprised 1243 P. sativum genotypes from 28 provinces and this was compared to 774 P. sativum genotypes that represented a globally diverse germplasm collection, as well as 103 genotypes from related Pisum species. The Chinese P. sativum germplasm was found to contain genotypes genetically distinct from the global gene pool sourced outside China. The Chinese spring type genotypes were separate from the global gene pool and from the other main Chinese gene pool of winter types. The distinct Chinese spring gene pool comprised genotypes from Inner Mongolia and Sha'anxi provinces, with those from Sha'anxi showing the greatest diversity. The other main gene pool within China included both spring types from other northern provinces and winter types from central and southern China, plus some accessions from Inner Mongolia and Sha'anxi. A core collection of Chinese landraces chosen to represent molecular diversity was compared both to the wider Chinese collection and to a geographically diverse core collection of Chinese landraces. The average gene diversity and allelic richness per locus of both the micro-satellite based core and the wider collection were similar, and greater than the geographically diverse core. The genetic diversity of P. sativum within China appears to be quite different to that detected in the global gene pool, including the presence of several rare alleles, and may be a useful source of allelic variation for both major gene and quantitative traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.