The aim of this study was to evaluate the effectiveness of vibrational assessment of the mandible fracture patterns. Measurement of natural frequencies and associated vibrational mode shapes was performed to determine the relationship between the dynamic behavior of the human mandible and incidence of mandibular fractures using both in vitro modal testing and finite element analysis. Our results show that the natural frequencies of the human mandible in dry and wet conditions are 567 Hz and 501 Hz, respectively. The first vibrational mode of human mandible is a bending vibration with nodes located at the mandibular body where bone fracture is less likely to occur. By contrast, high vibration amplitudes were identified in the symphysis/parasymphysis and subcondyle regions where bone fractures tend occur. These findings indicate that the vibrational characteristics of the mandible are potential parameters for assessment of the mechanisms of injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.