Illumina-based next generation sequencing (NGS) has accelerated biomedical discovery through its ability to generate thousands of gigabases of sequencing output per run at a fraction of the time and cost of conventional technologies. The process typically involves four basic steps: library preparation, cluster generation, sequencing, and data analysis. In 2015, a new chemistry of cluster generation was introduced in the newer Illumina machines (HiSeq 3000/4000/X Ten) called exclusion amplification (ExAmp), which was a fundamental shift from the earlier method of random cluster generation by bridge amplification on a non-patterned flow cell. The ExAmp chemistry, in conjunction with patterned flow cells containing nanowells at fixed locations, increases cluster density on the flow cell, thereby reducing the cost per run. It also increases sequence read quality, especially for longer read lengths (up to 150 base pairs). This advance has been widely adopted for genome sequencing because greater sequencing depth can be achieved for lower cost without compromising the quality of longer reads. We show that this promising chemistry is problematic, however, when multiplexing samples. We discovered that up to 5-10% of sequencing reads (or signals) are incorrectly assigned from a given sample to other samples in a multiplexed pool. We provide evidence that this "spreading-of-signals" arises from low levels of free index primers present in the pool. These index primers can prime pooled library fragments at random via complementary 3' ends, and get extended by DNA polymerase, creating a new library molecule with a new index before binding to the patterned flow cell to generate a cluster for sequencing. This causes the resulting read from that cluster to be assigned to a different sample, causing the spread of signals within multiplexed samples. We show that low levels of free index primers persist after the most common library purification procedure recommended by Illumina, and that the amount of signal spreading among samples is proportional to the level of free index primer present in the library pool. This artifact causes homogenization and misclassification of cells in single cell RNA-seq experiments. Therefore, all data generated in this way must now be carefully re-examined to ensure that "spreading-ofsignals" has not compromised data analysis and conclusions. Re-sequencing samples using an older technology that uses conventional bridge amplification for cluster generation, or improved library cleanup strategies to remove free index primers, can minimize or eliminate this signal spreading artifact.
Calvarial bone defects are a common clinical scenario in craniofacial surgery. Numerous approaches are used to reconstruct skull defects, and each possesses its own inherent disadvantages. This fact underscores the opportunity to develop a novel method to repair osseous defects in craniofacial surgery. Recent literature strongly suggests that cell-based therapies in the form of regenerative medicine may be a developing paradigm in reconstructive surgery. Although numerous studies have probed osteoprogenitor cells from mice, few have explored the biology of human cells in the setting of osteogenesis in an equally rigorous manner. This study proposes a nude mouse model of critical-sized calvarial defects to study the in vivo biology of human osteoprogenitor cells. Critical-sized 4.0-mm calvarial defects were created in nude mice (n = 15) with a custom trephine drill bit outfitted to a dental drill handpiece. During the craniotomy, the dura mater was spared from injury. Gross inspection, routine histology, and micro-computed tomographic scanning were performed at 2, 4, 8, and 16 weeks postoperatively. There was no calvarial healing in any of the animals by 16 weeks. The dura mater remained intact in all subjects. Gross, histologic, and radiographic assays confirmed these findings. Although several studies have implanted human osteoprogenitor cells in vivo in various animal models, few have documented the appropriate controls or conditions necessary to support the potential to translate benchtop findings into clinical applications. We propose in this study that the nude mouse critical-sized calvarial defect model will be valuable with increasing investigations with human osteoprogenitor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.