The use of conductive frameworks as the host scaffold to obtain nanostructured sulfur cathodes is an efficient way to increase the sulfur utilization for redox reaction in Li‐S batteries with large discharge capacity and high energy density. However, due to dynamical interfaces driven by phase evolution between the conductive hosts and S‐containing guests during cycling, the cathode still faces poor stability. Herein, the use of O‐/N‐containing nanocarbon as the conductive host sheds a light on the role of the dynamic interface between the carbon host and S‐containing guest for a stable Li‐S cell. The outstanding reversibility and stability of N‐doped C/S cathodes are attributed to the favorable guest‐host interaction at the electron‐modified interface, manifesting as (i) a chemical gradient to adsorb polar polysulfides and (ii) ameliorative deposition and recharging of Li2S on the region of electron‐rich pyridinic N and a graphene domain surrounding quaternary N. Highly reversible, efficient and stable Li storage properties such as mitigated polarization and charge barrier, high capacity of 1370 and 964 mAh g−1 at 0.1 and 1.0 C, respectively, and 70% of capacity retention after 200 cycles are achieved. Mechanistic insight into the capacity fading inspires the rational design on electrodes for high‐performance electrochemical systems.
The reversible electrochemical transformation from lithium (Li) and sulfur (S) into Li2 S through multielectron reactions can be utilized in secondary Li-S batteries with very high energy density. However, both the low Coulombic efficiency and severe capacity degradation limits the full utilization of active sulfur, which hinders the practical applications of Li-S battery system. The present study reports a ternary-layered separator with a macroporous polypropylene (PP) matrix layer, graphene oxide (GO) barrier layer, and Nafion retarding layer as the separator for Li-S batteries with high Coulombic efficiency and superior cyclic stability. In the ternary-layered separator, ultrathin layer of GO (0.0032 mg cm(-2) , estimated to be around 40 layers) blocks the macropores of PP matrix, and a dense ion selective Nafion layer with a very low loading amount of 0.05 mg cm(-2) is attached as a retarding layer to suppress the crossover of sulfur-containing species. The ternary-layered separators are effective in improving the initial capacity and the Coulombic efficiency of Li-S cells from 969 to 1057 mAh g(-1) , and from 80% to over 95% with an LiNO3 -free electrolyte, respectively. The capacity degradation is reduced from 0.34% to 0.18% per cycle within 200 cycles when the PP separator is replaced by the ternary-layered separators. This work provides the rational design strategy for multifunctional separators at cell scale to effective utilizing of active sulfur and retarding of polysulfides, which offers the possibility of high energy density Li-S cells with long cycling life.
Quantum phase transitions (QPTs) are usually associated with many-body systems in the thermodynamic limit when their ground states show abrupt changes at zero temperature with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can also occur in a system composed of only a two-level atom and a single-mode bosonic field, described by the quantum Rabi model (QRM). Here we report an experimental demonstration of a QPT in the QRM using a 171Yb+ ion in a Paul trap. We measure the spin-up state population and the average phonon number of the ion as two order parameters and observe clear evidence of the phase transition via adiabatic tuning of the coupling between the ion and its spatial motion. An experimental probe of the phase transition in a fundamental quantum optics model without imposing the thermodynamic limit opens up a window for controlled study of QPTs and quantum critical phenomena.
The manipulation of nanobuilding blocks into a 3D macroscopic monolith with ordered hierarchical structures has been much desired for broad and large-scale practical applications of nanoarchitectures. In this paper, we demonstrate a fully bottom-up strategy for the preparation of aramid aerogel monoliths. The process starts from the synthesis of poly(p-phenylene terephthalamide) (PPTA) through the polycondensation of p-phenylenediamine and terephthaloyl chloride, with the assistance of a nonreactive dispersing agent (polyethylene glycol dimethyl ether), which helps the dispersal of the as-synthesized PPTA in an aqueous medium for the formation of p-aramid nanofibers (ANF). Then the vacuum-assisted self-assembly (Vas) technique is skillfully connected with the ice-templated directional solidification (I) technique, and the combined VasI method successfully tailors the self-assembly of ANF to transform the 1D nanofibers into a 3D aerogel monolith with a specific long-range aligned, lasagna-like, multilaminated internal structure. The study of the aerogel microstructure revealed the dependence of the lamina orientation on the direction of the freezing front of ice crystals. This direction should be parallel to the deposition plane of the Vas process if a long-range aligned lamellar structure is desired. The anisotropy of the multilaminated aerogel was proven by the different results in the radial and axial directions in the compression and thermal conductivity tests. As a kind of organic aerogel, the ANF monolith has typical low density, high porosity, and low thermal conductivity. Additionally, the ANF monolith exhibits high compressive stress and excellent thermal stability. Considering its high performance and facile preparation process, potential applications of the ANF aerogel monolith can be expected.
Poly(p-phenylene terephthalamide) nanofibers were prepared via a polymerization induced self-assembly process with the assistance of methoxy polyethylene glycol (mPEG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.