In this paper, we investigate a delayed differential algebraic prey-predator system, where commercial harvesting on predator and additive Allee effect on prey are considered. A discrete time delay is utilized to represent gestation delay of the predator population. Positivity of solutions and uniform persistence of system are discussed. In the absence of time delay, by taking economic interest as a bifurcation parameter, some sufficient conditions associated with additive Allee effect and economic interest are derived to show that the proposed system undergoes singularity-induced bifurcation around the interior equilibrium. In the presence of time delay, combined dynamic effects of time delay and additive Allee effect on population dynamics are discussed in the case of positive economic interest of commercial harvesting. Existence of Hopf bifurcation and local stability switch around the interior equilibrium are studied as gestation delay crosses the critical value. Furthermore, properties of Hopf bifurcation are investigated based on the center manifold theorem and the norm form of a delayed singular system. Existence of global continuation of periodic solutions bifurcating from interior equilibrium is discussed by using a global Hopf bifurcation theorem. Numerical simulations are provided to show consistency with theoretical analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.