BackgroundThe ATLANTIC trial reported that higher PD-L1 expression in tumors was involved in a higher objective response in patients with EGFR+/ALK+ non-small cell lung cancer (NSCLC), indicating the possibility of anti-PD-1/PD-L1 therapy as a third-line (or later) treatment for advanced NSCLC. Therefore, the determination of status and regulatory mechanisms of PD-L1 in EGFR mutant NSCLC before and after acquired EGFR-TKIs resistance are meaningful.MethodsThe correlation among PD-L1, c-MET, and HGF was analyzed based on TCGA datasheets and paired NSCLC specimens before and after acquired EGFR-TKI resistance. EGFR-TKI resistant NSCLC cells with three well-known mechanisms, c-MET amplification, hepatocyte growth factor (HGF), and EGFR-T790M, were investigated to determinate PD-L1 expression status and immune escape ability. PD-L1-deleted EGFR-TKIs sensitive and resistant cells were used to evaluate the immune escape ability of tumors in mice xenograft models.ResultsPositive correlations were found among PD-L1, c-MET, and HGF, based on TCGA datasheets and paired NSCLC specimens. Moreover, the above three resistant mechanisms increased PD-L1 expression and attenuated activation and cytotoxicity of lymphocytes in vitro and in vivo, and downregulation of PD-L1 partially restored the cytotoxicity of lymphocytes. Both MAPK and PI3K pathways were involved in the three types of resistance mechanism-induced PD-L1 overexpression, whereas the NF-kappa B pathway was only involved in T790M-induced PD-L1 expression.ConclusionsHGF, MET-amplification, and EGFR-T790M upregulate PD-L1 expression in NSCLC and promote the immune escape of tumor cells through different mechanisms.
Breast cancer is a highly heterogeneous disease at the molecular level and >90% of mortalities are due to metastasis and its associated complications. The present study determined the impact of molecular subtypes on metastatic behavior and overall survival (OS) of patients with metastatic breast cancer. The influence of molecular subtypes on the sites and number of metastases in 166 patients with metastatic breast cancer from a single center were assessed; and the influence of molecular subtypes on the sites and number of metastases and OS in 15,322 metastatic cases among 329,770 patients with primary breast cancer from the Surveillance, Epidemiology and End Results database were assessed. Analysis of both datasets revealed that different molecular subtypes exhibited differences in the prevalence of different metastatic sites and number of metastases. A larger proportion of bone metastasis was observed in the hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)+ subtype than in other subtypes, more lung metastasis was observed in the HR-/HER2+ subtype and more liver metastasis occurred in the HR+/HER2+ and HR-/HER2+ subtypes. Single-site metastasis was more common for the HR+/HER2− subtype than in other subtypes, while 2–3 sites of metastases were more common for the HR+/HER2+ subtype and ≥4 sites of metastases were more frequent in the HR-/HER2+ and HR-/HER2- subtypes. The mean OS of patients with primary breast cancer in the HR+/HER2− subtype group was the longest (78.5 months), while the HR-/HER2- group had the shortest mean OS (69.1 months). The mean OS of the metastatic HR+/HER2+ group was the longest (46.0 months), while the mean OS of the metastatic HR-/HER2- group was the shortest (18.5 months). In conclusion, the results of the present study suggested that different molecular subtypes of breast cancer have different metastatic behavior, as well as mean OS.
The addition of bevacizumab to chemotherapy has prolonged overall and progression-free survival rates for metastatic colorectal cancer (mCRC). However, KRAS-mutant (KRAS-mut) CRC, lacking an ideal targeted agent, represents an inferior-response subgroup of patients. In the present study, we investigated a combination approach of bevacizumab + olaparib in KRAS-mut CRC in a preclinical setting. The combined therapy effectively prevented tumor growth in a KRAS-mut cancer cell-derived xenograft model, although this effect was not observed in vitro . Under bevacizumab treatment, we detected intratumor hypoxia and impaired homologous recombination repair (HRR), accompanied by vascular regression. We explored the underlying mechanism of this combined therapy by mimicking a hypoxic condition in vitro using cobalt chloride (CoCl 2 ). The results showed that hypoxia impairs HRR and therefore sensitized KRAS-mut CRC cell lines HCT-116, SW620, and Lovo to olaparib. Furthermore, under this hypoxic condition, olaparib could arrest the cell cycle in the G2/M phase, increase DNA damage and dramatically induce cell apoptosis in KRAS-mut CRC cells. Taken together, these results indicated that the combination of bevacizumab + olaparib could be a potential therapeutic approach in a KRAS-mut CRC cohort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.