We promoted order-disorder transformation of poly(3-hexylthiophene) (P3HT) in solution by ultrasonic oscillation which substantially improved crystallinity in its pure film. P3HT with low molecular weight (M(w)) dispersed very well in p-xylene solvent and few aggregates generated in the solution. For P3HT with high M(w), the results suggested the coexistence of two phases: disordered coils in solution and ordered microcrystals in suspension. Upon ultrasonic oscillating, more ordered precursors generated in solution due to increased self-assembly from disordered to ordered configuration, which resulting from decreased extent of chains entanglement existing in high molecular system, and red shift at absorption maximum and growing intensity of the pi-pi* absorption at ca. 604 nm were observed in solution. The films prepared from the oscillated solution then showed increased degree of crystallinity, pi-pi interactions and homogeneously distributed nanofibrils, which should be attributed to the ordered precursors constructed in solution. Furthermore, the best crystallinity of the film was obtained at the oscillating time of 4 min, showing the equilibrium state between the increased content of crystalline molecules and the shortened crystalline length. This simple method paves the way for the decreasing chains entanglement during crystallizing process of conjugated polymer in solution, and it enriches the ways to improve crystalline order in thin films comprising crystallizable polymers.
Anatomic differences on the toe pad epithelial cells of torrent and tree frogs (elongated versus regular geometry) are believed to account for superior ability of torrent frogs to attach to surfaces in the presence of running water. Here, the friction properties of artificial hexagonal arrays of polydimethylsiloxane (PDMS) pillars (elongated and regular) in the presence of water are compared. Elongated pillar patterns show significantly higher friction in a direction perpendicular to the long axis. A low bending stiffness of the pillars and a high edge density of the pattern in the sliding direction are the key design criteria for the enhanced friction. The elongated patterns also favor orientation‐dependent friction. These findings have important implications for the development of new reversible adhesives for wet conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.