In this paper, the electron beam vacuum coating method was used to coat a SiO 2 film on an MgAl 2 O 4 spinel substrate. The thickness of the coating was aimed to be 925 nm based on the physics of the antireflection coatings. Atomic force microscope images revealed that the coated silica was 880 nm thick, which is close to the aimed theoretical thickness and had 2.11 nm roughness. It could enhance the transparency of the spinel substrate by being coated on it. The infrared transmittance of the sample coated with SiO 2 film in the range of 3700 nm-4800 nm was measured by a Fourier transform infrared spectrometer and reached 92.5% to 78.5%, which was about 2%-4% higher than that of MgAl 2 O 4 spinel. In addition, it was discovered that the bonding force between the coating and the substrate is determined to be about 200 MPa. The results of this study can be used for further precise design and production of antireflection coatings on the transparent materials that need more transparency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.