The self-organizing fuzzy (SOF) logic classifier is an efficient and non-parametric classifier. Its classification process is divided into an offline training stage, an online training stage, and a testing stage. Representative samples of different categories are obtained through the first two stages, and these representative samples are called prototypes. However, in the testing stage, the classification of testing samples is completely dependent on the prototype with the maximum similarity, without considering the influence of other prototypes on the classification decision of testing samples. Aiming at the testing stage, this paper proposed a new SOF classifier based on the harmonic mean difference (HMDSOF). In the testing stage of HMDSOF, firstly, each prototype was sorted in descending order according to the similarity between each prototype in the same category and the testing sample. Secondly, multiple local mean vectors of the prototypes after sorting were calculated. Finally, the testing sample was classified into the category with the smallest harmonic mean difference. Based on the above new method, in this paper, the multiscale permutation entropy (MPE) was used to extract fault features, linear discriminant analysis (LDA) was used to reduce the dimension of fault features, and the proposed HMDSOF was further used to classify the features. At the end of this paper, the proposed fault diagnosis method was applied to the diagnosis examples of two groups of different rolling bearings. The results verify the superiority and generalization of the proposed fault diagnosis method.
With the emergence of data islands and the popular awareness of privacy, federated learning, as an emerging data sharing and exchange model, can realize multi-party collaboration under the premise of protecting data privacy and security because the data distributed in multiple devices cannot be sent locally. To achieve benefits for all parties involved, it has been widely used in many fields such as finance, medical care, and education. However, FL also has various security and privacy issues. Starting from the overview of federated learning, this article describes in detail the threat model and existing security issues, including replay attacks, poisoning attacks, reasoning attacks, etc., and then makes a certain analysis of FL privacy protection security technologies. Compared with SMC and HE, differential privacy is excellent in terms of efficiency. Finally, we discussed the challenges of privacy protection and security issues and future research directions.
Hidden services are a feature of Tor(The Onion Router)[1]. It provides anonymity for the service requester while maintaining the anonymity of the service provider. Since it is quite difficult to trace back and locate both parties in the communication, the criminals use hidden services mechanisms to construct various illegal activities in the darknet, which has brought adverse effects to society. In order to prevent the abuse of Tor hidden services, the discovery and analysis of hidden services are particularly important. The aim of this survey paper is to review and compare the literature of the past five years, provide the readers with methods for discovering tor hidden services, along with the various content analysis methods developed and proposed from time to time. we explain their key ideas and show their interrelations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.