Objectives: n-Hexane, a common industrial organic solvent, causes multiple organ damage, especially neurotoxicity, which is proved to be caused by its metabolite 2,5-hexanedione (2,5-HD). We previously showed that 2,5-HD induced apoptosis of rat bone marrow mesenchymal stem cells (BMSCs). In the current study, we explored the mechanism of 2,5-HD-induced apoptosis, especially the role played by reactive oxygen species (ROS). Methods: Intracellular ROS levels after 2,5-HD treatment were measured by the dichloro-dihydro-fluorescein diacetate (DCFH-DA) method, and the antioxidant N-acetyl cysteine (NAC) was used to scavenge ROS. Apoptosis, mitochondrial membrane potential (MMP), and caspase-3 activity were measured after 2,5-HD exposure with or without NAC pretreatment. Results: In rat BMSCs, 20 mM 2,5-HD significantly increased ROS levels and apoptosis. In addition, MMP activity was decreased and caspase-3 activity was increased. With NAC pretreatment, ROS increases were prevented, cells were rescued from apoptosis, and both MMP and caspase-3 activity returned to normal levels. Western blotting analysis of malondialdehyde-modified proteins and superoxide dismutase (SOD) 1 showed that after 2,5-HD exposure, BMSCs had oxidative damage and abnormal SOD1 expression. These returned to normal when cells were pretreated with NAC in addition to 20 mM 2,5-HD. Furthermore, the expressions of NF-κB p65/RelA and phospho-NF-κB p65/RelA (Ser536) were suppressed after 2,5-HD exposure and restored by NAC pretreatment. Conclusions: 2,5-HD-induced apoptosis in rat BMSCs is potentially mediated by excessive ROS production.
n-Hexane is an organic solvent widely used in industry. 2,5-Hexanedione (2,5-HD), the major neurotoxic metabolite of n-hexane, decreases the levels of neurofilaments (NFs) in neurons. Neurogenesis occurs throughout life, and the hippocampal dentate gyrus is one of two major brain areas showing neurogenesis in adulthood. In the current study, rats were intraperitoneally injected with normal saline solution or 2,5-HD five times per week for five continuous weeks. 2,5-HD was administered to the low-dose and high-dose groups at 200 and 400 mg/kg/day, respectively. Then, immunoreactive cells were counted in the hippocampal granule cell layer (GCL) and subgranular zone (SGZ). Ki67 cells significantly decreased in the high-dose group, while the percentage of proliferative Sox2 cells significantly increased, consistent with high hippocampal Sox2 expression. Additionally, western blotting showed that exposure to high doses of 2,5-HD led to decreased NF-L in both the cortex and hippocampus, whereas low doses led to a significant reduction in the cortex only. In conclusion, 2,5-HD increases the percentage of proliferating neural stem and progenitor (Sox2) cells in the SGZ/GCL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.