The underlying mechanisms of metastasis and recurrence of liver cancer remain largely unknown. Here, we found that Brother of the Regulator of Imprinted Sites (BORIS) variant SF2(C2/A4) was highly expressed in high metastatic potential hepatocellular carcinoma (HCC) cells and clinical tumor samples, related to the formation of satellite nodules. Its over expression promoted self-renewal, the expression of tumor stem cell markers, chemoresistance, wound healing rate, invasion and metastasis of HepG2 and Hep3B cells; reinforced epithelialmesenchymal transition (EMT), decreased the expression of E-cadherin and increased N-cadherin and Vimentin. Subcellular localization experiment showed that BORIS SF2(C2/A4) was localized in nucleus and cytoplasm. Further double luciferase reporter gene experiment confirmed that it bound to TWIST1 gene promoter and significantly increased latter expression. BORIS SF2(C2/A4) knock down induced apoptosis of HCCLM3 and PLC/PRF/5 cells, and increased the protein content of cleaved caspase 3. Additionally, BORIS SF2(C2/A4) over expression increased the expression of fibroblast growth factor 2 (FGF2) in HepG2 and Hep3B cells. FGF2 expressed higher in HCC tumor tissues than in paired peritumor tissues, and its expression was positively correlated with BORIS SF2(C2/A4).Interestingly, high expression of FGF2 is also associated with the formation of satellite nodules. Moreover, using the medium from BORIS SF2(C2/A4) overexpressed cell lines to coculture hepatic stellate cell (HSCs) line LX-2, the latter could be activated and increased the expression of CD90 and PIGF, which is consistent with the effect of adding bFGF alone. These results indicate that BORIS SF2(C2/A4) plays a role in deterioration of liver cancer by regulating TWIST1 to induce EMT, and by FGF2 to activate HSCs.
Background: The possibility of a cancer vaccine aimed at stimulating or mobilizing the body's immune system to control and kill tumor cells is emerging as a potential new strategy for tumor immunological therapy. CCCTC-binding Factor Like (CTCFL)/Brother of the Regulator of Imprinted Sites (BORIS), a cancer-testis antigen (CTA), has 23 mRNA splice variants classified into six subfamilies (sfs) and potentially encodes 17 distinct polypeptides. Based on our previous long-term research on hepatocellular carcinoma (HCC), we were particularly interested in whether BORIS sf2 could be a promising candidate for immunotherapy targeting liver cancer cells. Therefore, in this study, we aimed to construct an animal model to study the immunogenicity of human BORIS sf2 in murine hepatoma cells.
Methods:We established a hepatoma cell line expressing human BORIS sf2/C68 by inserting the sequences into a lentiviral vector pLVX-EF1α-IRES-Puro carrying the puromycin resistance gene. We achieved the stabilized expression of BORIS sf2/C68 in the oncogenic Hepa1c1c7 cells through lentivirusmediated approach. The Hepa1c1c7 cells expressing the BORIS sf2/C68 (5×10 6 /mouse) were inoculated subcutaneously into 6-week-old C57BL/6 mice to induce the formation of tumors.
Results:In the tumor formation experiment, the murine hepatoma cells expressing human BORIS sf2/C68 showed progressive growth in C57BL/6 mice. The animal model we constructed could be used to study the in vivo immunogenicity of the human BORIS sf2 in murine hepatoma cells.
Conclusions:The animals bearing BORIS sf2/C68-positive tumors may serve as an animal model for studying the therapeutic potency and safety of HCC vaccine directed at the CT-antigen BORIS sf2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.