In recent times, high-performance flexible pressure sensors that can be fabricated in an environmentally friendly and low-cost manner have received considerable attention owing to their potential applications in wearable health monitors and intelligent soft robotics. This paper proposes a highly sensitive flexible piezoresistive pressure sensor based on hybrid porous microstructures that can be designed and fabricated using a bio-inspired and low-cost approach employing the Epipremnum aureum leaf and sugar as the template. The sensitivity and detection limit of the obtained pressure sensor can be as high and low as 83.9 kPa–1 (<140 Pa) and 0.5 Pa, respectively. According to the mechanism and simulation analyses, the hybrid porous microstructures lower the effective elastic modulus of the sensor and introduce an additional pore resistance, which increases the contact area and conductive path with loads, thereby contributing to the high sensitivity that exceeds that of traditional microstructured pressure sensors. Real-time monitoring of human physiological signals such as finger pressing, voice vibration, swallowing activity, and wrist pulse is demonstrated for the proposed device. The high performance and easy fabrication of the hybrid porous microstructured sensor can encourage the development of a novel approach for the design and fabrication of future pressure sensors.
High-performance pressure sensors have attracted considerable attention recently due to their promising applications in touch displays, wearable electronics, human–machine interfaces, and real-time physiological signal perception.
Deep brain stimulation (DBS) has been proposed for severe, chronic, treatment-refractory obsessive-compulsive disorder (OCD) patients. Although serious adverse events can occur, only a few studies report on the safety profile of DBS for psychiatric disorders. In a prospective, open-label, interventional multi-center study, we examined the safety and efficacy of electrical stimulation in 30 patients with DBS electrodes bilaterally implanted in the anterior limb of the internal capsule. Safety, efficacy, and functionality assessments were performed at 3, 6, and 12 months post implant. An independent Clinical Events Committee classified and coded all adverse events (AEs) according to EN ISO14155:2011. All patients experienced AEs (195 in total), with the majority of these being mild (52% of all AEs) or moderate (37%). Median time to resolution was 22 days for all AEs and the etiology with the highest AE incidence was 'programming/stimulation' (in 26 patients), followed by 'New illness, injury, condition' (13 patients) and 'pre-existing condition, worsening or exacerbation' (11 patients). Sixteen patients reported a total of 36 serious AEs (eight of them in one single patient), mainly transient anxiety and affective symptoms worsening (20 SAEs). Regarding efficacy measures, Y-BOCS reduction was 42% at 12 months and the responder rate was 60%. Improvements in GAF, CGI, and EuroQol-5D index scores were also observed. In sum, although some severe AEs occurred, most AEs were mild or moderate, transient and related to programming/stimulation and tended to resolve by adjustment of stimulation. In a severely treatment-resistant population, this open-label study supports that the potential benefits outweigh the potential risks of DBS.
High sensitivity and linear response over a wide sensing range are important in flexible pressure sensors for their practical applications in biomimetic electronics and human−machine interactions. Previous studies regarding flexible pressure sensors have primarily focused on their high sensitivity, whereas they generally exhibit a narrow linear sensing range. In this article, a hierarchical structure with conical secondary features is reported, and its role in enhancing the linear sensing range of piezoresistive pressure sensors is demonstrated. We find that the conical secondary features on the hierarchical structure significantly improve the linear relationship between the contact area and applied force over a broad range. This advantage endows the sensor with a wide linear sensing range. To obtain this type of hierarchical structure, pollen grains of wild chrysanthemum are exploited as templates, and the prepared sensor presents a high sensitivity of 3.5 kPa −1 over an ultrawide response range of 0−218 kPa with good linearity via a coefficient of determination (R 2 ) of 0.997. Furthermore, owing to the simple and scalable process, a sensor array with high density is fabricated to map the spatial pressure distribution and simulate an electronic skin to detect Braille characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.