Mental strength and history of winning play an important role in the determination of social dominance. However, the neural circuits mediating these intrinsic and extrinsic factors have remained unclear. Working in mice, we identified a dorsomedial prefrontal cortex (dmPFC) neural population showing "effort"-related firing during moment-to-moment competition in the dominance tube test. Activation or inhibition of the dmPFC induces instant winning or losing, respectively. In vivo optogenetic-based long-term potentiation and depression experiments establish that the mediodorsal thalamic input to the dmPFC mediates long-lasting changes in the social dominance status that are affected by history of winning. The same neural circuit also underlies transfer of dominance between different social contests. These results provide a framework for understanding the circuit basis of adaptive and pathological social behaviors.
To examine the network-level organizing principles by which the brain achieves its real-time encoding of episodic information, we have developed a 96-channel array to simultaneously record the activity patterns of as many as 260 individual neurons in the mouse hippocampus during various startling episodes. We find that the mnemonic startling episodes triggered firing changes in a set of CA1 neurons in both startle-type and environment-dependent manners. Pattern classification methods reveal that these firing changes form distinct ensemble representations in a low-dimensional encoding subspace. Application of a sliding window technique further enabled us to reliably capture not only the temporal dynamics of real-time network encoding but also postevent processing of newly formed ensemble traces. Our analyses revealed that the network-encoding power is derived from a set of functional coding units, termed neural cliques, in the CA1 network. The individual neurons within neural cliques exhibit ''collective cospiking'' dynamics that allow the neural clique to overcome the response variability of its members and to achieve real-time encoding robustness. Conversion of activation patterns of these coding unit assemblies into a set of real-time digital codes permits concise and universal representation and categorization of discrete behavioral episodes across different individual brains.episodic memory ͉ neural clique ͉ neural code ͉ startle ͉ cell assembly
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.