Well-defined gold nanobelts as well as unique gold nanocombs made of nanobelts were readily synthesized by the reduction of HAuCl4 with ascorbic acid in aqueous mixed solutions of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the anionic surfactant sodium dodecylsulfonate (SDSn). Single-crystalline gold nanobelts grown along the <110> and <211> directions were prepared in mixed CTAB-SDSn solutions at 4 and 27 degrees C, respectively. Furthermore, single-crystalline gold nanocombs consisting of a <110>-oriented stem nanobelt and numerous <211>-oriented nanobelts grown perpendicularly on one side of the stem were fabricated by a two-step process with temperature changing from 4 to 27 degrees C. It was proposed that the mixed cationic-anionic surfactants exerted a subtle control on the growth of gold nanocrystals in solution due to the cooperative effect of mixed surfactants. This synthetic strategy may open a new route for the mild fabrication and hierarchical assembly of metal nanobelts in solution. The obtained gold nanobelts showed good electrocatalytic activity toward the oxidation of methanol in alkaline solution; in particular, the electrode modified with the nanobelts obtained at 27 degrees C exhibited an electrocatalytic activity considerably higher than normal polycrystalline gold electrode. Moreover, the gold nanobelts were used as the surface-enhanced Raman scattering (SERS) substrate for detecting the enhanced Raman spectra of p-aminothiophenol (PATP) molecules, and the gold nanobelts obtained at 4 degrees C exhibited an unusual larger enhancement of the b2 modes relative to the a1 modes for the adsorbed PATP molecules.
Mesoporous silica materials with a variety of morphologies, such as monodisperse microspheres, gigantic hollow structures comprising a thin shell with a hole, and gigantic hollow structures consisting of an outer thin shell and an inner layer composed of many small spheres, have been readily synthesized in mixed water-ethanol solvents at room temperature using cetyltrimethylammonium bromide (CTAB) as the template. The obtained mesoporous silica generally shows a disordered mesostructure with typical average pore sizes ranging from 3.1 to 3.8 nm. The effects of the water-to-ethanol volume ratio (r), the volume content of tetraethyl orthosilicate TEOS (x), and the CTAB concentration in the solution on the final morphology of the mesoporous silica products have been investigated. The growth process of gigantic hollow shells of mesoporous silica through templating emulsion droplets of TEOS in mixed water-ethanol solution has been monitored directly with optical microscopy. Generally, the morphology of mesoporous silica can be regulated from microspheres through gigantic hollow structures composed of small spheres to gigantic hollow structures with a thin shell by increasing the water-to-ethanol volume ratio, increasing the TEOS volume content, or decreasing the CTAB concentration. A plausible mechanism for the morphological regulation of mesoporous silica by adjusting various experimental parameters has been put forward by considering the existing state of the unhydrolyzed and partially hydrolyzed TEOS in the synthesis system.
Helical mesoporous silica nanofibers with parallel nanochannels were synthesized in high yield via a novel seeding-growth method by using the achiral cationic surfactant cetyltrimethylammonium bromide (CTAB) as template without auxiliary additives. A general entropy-driven model taking into account the icelike structure water due to the hydrophobic effect was proposed to explain the formation of helical mesoporous silica nanofibers. It was indicated that helical silica mesostructures could result from a thick layer of highly ordered icelike water around thin silicate seed rods with a proper concentration, which was verified by the effect of various anions and organic additives on the formation of helical mesoporous silica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.