These preliminary data suggest that the use of MSCs could provide potential benefits in renal transplantation by reducing the dosage of conventional immunosuppressive drug that is required to maintain long-term graft survival and function.
Background Since the start of the COVID-19 outbreak, a large number of COVID-19-related papers have been published. However, concerns about the risk of expedited science have been raised. We aimed at reviewing and categorizing COVID-19-related medical research and to critically appraise peer-reviewed original articles. Methods The data sources were Pubmed, Cochrane COVID-19 register study, arXiv, medRxiv and bioRxiv, from 01/11/2019 to 01/05/2020. Peer-reviewed and preprints publications related to COVID-19 were included, written in English or Chinese. No limitations were placed on study design. Reviewers screened and categorized studies according to i) publication type, ii) country of publication, and iii) topics covered. Original articles were critically appraised using validated quality assessment tools. Results Among the 11,452 publications identified, 10,516 met the inclusion criteria, among which 7468 (71.0%) were peer-reviewed articles. Among these, 4190 publications (56.1%) did not include any data or analytics (comprising expert opinion pieces). Overall, the most represented topics were infectious disease (n = 2326, 22.1%), epidemiology (n = 1802, 17.1%), and global health (n = 1602, 15.2%). The top five publishing countries were China (25.8%), United States (22.3%), United Kingdom (8.8%), Italy (8.1%) and India (3.4%). The dynamic of publication showed that the exponential growth of COVID-19 peer-reviewed articles was mainly driven by publications without original data (mean 261.5 articles ± 51.1 per week) as compared with original articles (mean of 69.3 ± 22.3 articles per week). Original articles including patient data accounted for 713 (9.5%) of peer-reviewed studies. A total of 576 original articles (80.8%) showed intermediate to high risk of bias. Last, except for simulation studies that mainly used large-scale open data, the median number of patients enrolled was of 102 (IQR = 37–337). Conclusions Since the beginning of the COVID-19 pandemic, the majority of research is composed by publications without original data. Peer-reviewed original articles with data showed a high risk of bias and included a limited number of patients. Together, these findings underscore the urgent need to strike a balance between the velocity and quality of research, and to cautiously consider medical information and clinical applicability in a pressing, pandemic context. Systematic review registration https://osf.io/5zjyx/
Rationale: Ischemia/reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) that is associated with high morbidity and mortality, and for which specific treatments are lacking. In this study, we investigated the protective effect of human urine-derived stem cells (USCs) and their exosomes against IRI-induced AKI to explore the potential of these cells as a new therapeutic strategy. Methods: USCs were derived from fresh human urine. Cell surface marker expression was analyzed by flow cytometry to determine the characteristics of the stem cells. Adult male Sprague-Dawley rats were used to generate a lethal renal IRI model. One dose of USCs (2×10 6 cells/ml) or exosomes (20 µg/1 ml) in the experimental groups or saline (1 ml) in the control group was administered intravenously immediately after blood reperfusion. Blood was drawn every other day for measurement of serum creatinine (sCr) and blood urea nitrogen (BUN) levels. The kidneys were harvested for RNA and protein extraction to examine the levels of apoptosis and tubule injury. In vitro , the hypoxia-reoxygenation (H/R) model in human kidney cortex/proximal tubule cells (HK2) was used to analyze the protective ability of USC-derived exosomes (USC-Exo). Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), western blotting, superoxide dismutase activity, and malonaldehyde content analyses were used to evaluate oxidative stress in HK2 cells treated with USC-Exo after H/R. Exosomal microRNA sequencing techniques and bioinformatics analysis were used to search for enriched miRNAs in the exosomes and interacting genes. The interaction between miRNAs and the 3' untranslated region of the target gene was detected using a dual luciferase reporting system. The miRNA mimic and inhibitor were used to regulate the miRNA level in HK2 cells. Results: Treatment with USCs led to reductions in the levels of sCr, BUN, and renal tubular cell apoptosis; inhibited the infiltration of inflammatory cells; and protected renal function in the rat IRI model. Additionally, USC-derived exosomes protected against IRI-induced renal damage. miR-146a-5p was the most abundant miRNA in exosomes obtained from the conditioned medium (CM) of USCs. miR-146a-5p targeted and degraded the 3'UTR of interleukin-1 receptor-associated kinase 1 (IRAK1) mRNA, subsequently inhibited the activation of nuclear factor (NF)-κB signaling, and protected HK2 cells from H/R injury. USC transplantation also upregulated miR-146a-5p expression, downregulated IRAK1 expression and inhibited nuclear translocation of NF-κB p65 in the kidney of the rat IRI model. Conclusions: According to our experimental results, USCs could protect against renal IRI via exosomal miR-146a-5p , which could target the 3'UTR of I...
To solve problems in polymersome preparation caused by liposolubility of copolymers and to improve the cytosolic delivery efficiency of polymersomes to drugs, a lipopolysaccharide-amine (LPSA) copolymer with amphotericity and amphiphilicity is developed. LPSA contains two hydrophilic oppositely charged blocks (anionic oxidized alginate (OA), cationic polyethyleneimine (PEI 1.8 k)) and one hydrophobic block (cholesteryl), where OA is the backbone and cholesteryl-grafted PEI is the side chain. The two hydrophilic blocks first guarantee that LPSA will dissolve in water, and then help polymersome formation via electrostatic interactions to generate water insoluble interpolyelectrolyte complexes, which supplement the hydrophobic part to reach the right hydrophilicity/hydrophobicity ratio, and thus realize a one-step self-assembly of polymersomes in water. Our results show LPSA nanopolymersomes (LNPs) have low cytotoxicity and degradability, and an excellent ability to enter cells. TEM observation demonstrates that LNPs are entrapped in endosomes after endocytosis, and are then released to cytosols because of their strong endosomal escape capacity. As an example of cytosolic delivery to bioactive molecules, pDNA is delivered in mesenchymal stem cells, and more than 95% of cells express a large target protein, indicating that LNPs have high cytosolic delivery efficiency. Our study provides a novel, easy, and universal method to design copolymers for the preparation of polymersomes as efficient cytosolic delivery nanocarriers.
Calcineurin inhibitors, including tacrolimus, are largely responsible for advances in allotransplantation. However, the nephrotoxicity associated with these immunosuppressants impairs patients' long-term survival after renal allograft. Therefore, novel regimens that minimize or even eliminate calcineurin inhibitors could improve transplantation outcomes. In this pilot study, we investigated the use of low-dose tacrolimus in combination with mesenchymal stem cells (MSCs), which are immunosuppressive and prolong allograft survival in experimental organ transplant models. Donor-derived, bone marrow MSCs combined with a sparing dose of tacrolimus (0.04-0.05 mg/kg/day) were administered to 16 de novo living-related kidney transplant recipients; 16 other patients received a standard dose of tacrolimus (0.07-0.08 mg/kg/day). The safety of MSC infusion, acute rejection, graft function, graft survival, and patient survival were evaluated over ≥24 months following kidney transplantation. All patients survived and had stable renal function at the 24 month follow-up. The combination of low-dose tacrolimus and MSCs was as effective as standard dose tacrolimus in maintaining graft survival at least 2 years after transplantation. In addition, both groups had similar urea, urine protein, urinary RBC, urinary WBC, 24-h urine protein, and creatinine clearance rates from 7 days to 24 months after transplantation. Furthermore, no differences in the proportion of lymphocytes, CD19, CD3, CD34, CD38, and natural killer cells were detected between the control and experimental groups. None of the MSC recipients experienced immediate or long-term toxicity from the treatment. This preliminary data suggests that the addition of MSCs permits the use of lower dosages of nephrotoxic calcineurin inhibitors following renal transplantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.