Professor drivers, including racing drivers, can drive cars to achieve drift motions by taking control of the steering angle in high tire slip ratios, which provides a way to improve the driving safety of autonomous vehicles. The existing studies can be divided into two kinds based on analysis methods, and the theory-based is chosen in this study. Because the recent theory based is most applied for planar models with neglect of the rollover accident risk, the nonlinear vehicle model is established by considering longitudinal, lateral, roll, and yaw motions and rolling safety with the nonlinear tire model UniTire. The drift motion mechanism is analyzed in steady and transient states to obtain drift motion conditions, including the velocity limitation and the relationship between sideslip angle and yaw rate, and vehicle main status parameters including the velocity, side-slip angle and yaw rate in drift conditions. The state-feedback controller is designed based on robust theory and LMI (linear matrix inequation) with uncertain disturbances to realize circle motions in drift conditions. The designed controller in simulations realizes drift circle motions aiming at analyzed status target values by matching the front-wheel steering angle with saturated tire forces, which satisfies the Lyapunov stability with robustness. Robust control in drift conditions solves the problem of how to control vehicles to perform drift motions with uncertain disturbances and improves the driving safety of autonomous vehicles.
Vehicle drifting control has attracted wide attention, and the study methods are divided into expert-based and theory-based. In this paper, the vehicle drifting control was based on the vehicle drifting state characteristics. The vehicle drifting state parameters were obtained by the theory-based vehicle drifting motion mechanism analysis based on a nonlinear vehicle dynamics model, which was used to express the vehicle characteristics, together with the UniTire model, by considering the vehicle longitudinal, lateral, roll, and yaw motions. A vehicle drifting controller was designed by the model predictive control (MPC) theory and a linear dynamics model with the linearized expressions of nonlinear tire forces based on the consideration of measurable errors. The control targets were the vehicle drifting state parameters obtained by calculation, and the controller performance was proved by simulation in MATLAB/Simulink, demonstrating that the controller is good to realize vehicle drifting motions. The same target drifting motions were realized at different original states, which proved that the vehicle drifting control is possible with the designed controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.