FKBP5 (FKBP51) is a glucocorticoid receptor (GR) binding protein, which acts as a co-chaperone of heat shock protein 90 (HSP90) and negatively regulates GR. Its association with mental disorders has been identified, but its function in disease development is largely unknown. Long-term potentiation (LTP) is a functional measurement of neuronal connection and communication, and is considered one of the major cellular mechanisms that underlies learning and memory, and is disrupted in many mental diseases. In this study, a reduction in LTP in Fkbp5 knockout (KO) mice was observed when compared to WT mice, which correlated with changes to the glutamatergic and GABAergic signaling pathways. The frequency of mEPSCs was decreased in KO hippocampus, indicating a decrease in excitatory synaptic activity. While no differences were found in levels of glutamate between KO and WT, a reduction was observed in the expression of excitatory glutamate receptors (NMDAR1, NMDAR2B and AMPAR), which initiate and maintain LTP. The expression of the inhibitory neurotransmitter GABA was found to be enhanced in Fkbp5 KO hippocampus. Further investigation suggested that increased expression of GAD65, but not GAD67, accounted for this increase. Additionally, a functional GABAergic alteration was observed in the form of increased mIPSC frequency in the KO hippocampus, indicating an increase in presynaptic GABA release. Our findings uncover a novel role for Fkbp5 in neuronal synaptic plasticity and highlight the value of Fkbp5 KO as a model for studying its role in neurological function and disease development.
Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53+/−pp5+/− or p53+/−pp5−/− mice revealed that complete loss of PP5 reduces tumorigenesis in the p53+/− mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.
MLN4924 is a first-in-class small molecule inhibitor of NEDD8-activating enzyme (NAE), which is currently in several clinical trials for anti-cancer applications. However, MLN4924 also showed some off-target effects with potential to promote the growth of cancer cells which counteracts its anticancer activity. In this study, we found that MLN4924 increases the levels of PD-L1 mRNA and protein in dose- and time-dependent manners. Mechanistic study showed that this MLN4924 effect is largely independent of neddylation inactivation, but is due to activation of both ERK and JNK signals, leading to AP-1 activation, which is blocked by the small molecule inhibitors of MEK and JNK, respectively. Biologically, MLN4924 attenuates T cell killing in a co-culture model due to PD-L1 upregulation, which can be, at least in part, abrogated by either MEK inhibitor or anti-PD-L1 antibody. In an in vivo BALB/c mouse xenograft tumor model, while MLN4924 alone had no effect, combination with either MEK inhibitor or anti-PD-L1 antibody enhanced the suppression of tumor growth. Taken together, our study provides a sound rationale for effective anticancer therapy in combination of anti-PD-L1 antibody or MEK inhibitor with MLN4924 to overcome the side-effect of immunosuppression by MLN4924 via PD-L1 induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.