Linolenic acid is an important fatty acid, and volatiles generated by its oxidation are the major components of food flavor. In this study, volatile components generated from linolenic acid during heating were detected and analyzed by using thermal desorption cryo-trapping system coupled with gas chromatography-mass spectrometry. A total of 52 volatile compounds were identified, including aldehydes (18), ketones (12), alcohols (6), furans (4), acids (6) and aromatic compounds (6). The forming temperature of each volatile compound was also determined. It was found that most volatile compounds with shorter carbon chains were mainly generated at lower temperatures, while volatile compounds with longer carbon chains were mainly produced at higher temperatures. Results of principal component analysis show that most of the identified volatiles were considered as the characteristic ones of the high temperature points. Potential thermal oxidation mechanism of linolenic acid was also given at the same time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.