Fuzzy interpolative reasoning strengthens the power of fuzzy inference by enhancing the robustness of fuzzy systems and reducing systems complexity. However, after a series of interpolations, it is possible that multiple object values for a common variable are inferred, leading to inconsistency in interpolated results. Such inconsistencies may result from defective interpolated rules or incorrect interpolative transformations. This paper presents a novel approach for identification and correction of defective rules in interpolative transformations, thereby removing the inconsistencies. In particular, an assumption-based truth maintenance system is used to record dependencies between interpolations, and the underlying technique that the classical general diagnostic engine employs for fault localization is adapted to isolate possible faulty interpolated rules and their associated interpolative transformations. From this, an algorithm is introduced to allow for the modification of the original linear interpolation to become first-order piecewise linear. The approach is applied to a realistic problem, which predicates the diarrheal disease rates in remote villages, to demonstrate the potential of this work.
Electronic government (e-government) uses information and communication technologies to deliver public services to individuals and organisations effectively, efficiently and transparently. E-government is one of the most complex systems which needs to be distributed, secured and privacy-preserved, and the failure of these can be very costly both economically and socially. Most of the existing e-government systems such as websites and electronic identity management systems (eIDs) are centralized at duplicated servers and databases. A centralized management and validation system may suffer from a single point of failure and make the system a target to cyber attacks such as malware, denial of service attacks (DoS), and distributed denial of service attacks (DDoS). The blockchain technology enables the implementation of highly secure and privacy-preserving decentralized systems where transactions are not under the control of any third party organizations. Using the blockchain technology, exiting data and new data are stored in a sealed compartment of blocks (i.e., ledger) distributed across the network in a verifiable and immutable way. Information security and privacy are enhanced by the blockchain technology in which data are encrypted and distributed across the entire network. This paper proposes a framework of a decentralized e-government peer-to-peer (p2p) system using the blockchain technology, which can ensure both information security and privacy while simultaneously increasing the trust of the public sectors. In addition, a prototype of the proposed system is presented, with the support of a theoretical and qualitative analysis of the security and privacy implications of such system.
A rule base covering the entire input domain is required for the conventional Mamdani inference and Takagi-Sugeno-Kang (TSK) inference. Fuzzy interpolation enhances conventional fuzzy rule inference systems by allowing the use of sparse rule bases by which certain inputs are not covered. Given that almost all of the existing fuzzy interpolation approaches were developed to support the Mamdani inference, this paper presents a novel fuzzy interpolation approach that extends the TSK inference. This paper also proposes a data-driven rule base generation method to support the extended TSK inference system. The proposed system enhances the conventional TSK inference in two ways: (1) workable with incomplete or unevenly distributed data sets or incomplete expert knowledge that entails only a sparse rule base and (2) simplifying complex fuzzy inference systems by using more compact rule bases for complex systems without the sacrificing of system performance. The experimentation shows that the proposed system overall outperforms the existing approaches with the utilisation of smaller rule bases.
Ransomware is currently one of the most significant cyberthreats to both national infrastructure and the individual, often requiring severe treatment as an antidote. Triaging ransomware based on its similarity with well-known ransomware samples is an imperative preliminary step in preventing a ransomware pandemic. Selecting the most appropriate triaging method can improve the precision of further static and dynamic analysis in addition to saving significant time and effort. Currently, the most popular and proven triaging methods are fuzzy hashing, import hashing and YARA rules, which can ascertain whether, or to what degree, two ransomware samples are similar to each other. However, the mechanisms of these three methods are quite different and their comparative assessment is difficult. Therefore, this paper presents an evaluation of these three methods for triaging the four most pertinent ransomware categories WannaCry, Locky, Cerber and CryptoWall. It evaluates their triaging performance and run-time system performance, highlighting the limitations of each method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.