Static balance has a relevant influence on athletic performance as well as on reducing the risk of injury. The main goal of this study was to assess soccer athlete versus non-athlete balance performance via displacement and velocity parameters extracted from the center-of-pressure (COP) position time series. In order to accomplish our goal, we investigated standing balance in two male groups with unimpaired balance: non-athletes (n = 12) and collegiate varsity soccer athletes (n = 12). In order to make the standing balancing task more or less difficult, we altered participant base-of-support, as well as vision, yielding static (quiet stance) test conditions increasing in difficulty. From the COP position time series, displacement and velocity parameters were computed and plotted as a function of increasing test condition difficulty level. COP parameters showed steeper increases with increased test difficulty in non-athletes compared to athletes; this demonstrated athletes’ better ability to control their balance. We concluded that balance performance could be characterized via COP displacement and velocity response curves. This study lends new insights into how COP parameters can be utilized to determine and characterize improvements in balance between un-impaired subject populations (athletes versus non-athletes).
The purpose of this study was to investigate the effects of utilizing sensory (i.e., vision and touch), as well as static and dynamic base of support training on the balance of senior participants aged 60–80 years old. For each participant, there were several weeks of training, two sessions per week and assessments every two weeks. Training included walking and standing exercises on a hard surface, compliant and stiffer foam walking and standing balance training, and navigating obstacles. Within each session, to modify vision, all training included eyes-open and closed. Further, there were increases in training difficulty as the sessions progressed. It was observed that training over several weeks resulted in increases in stability, as observed by the decreases in Balance Error Scoring System (BESS) assessment results. However, increases in balance confidence, as observed by the Activities-Specific Balance Confidence (ABC) scale were less certain in this healthy elderly (or senior) population. It is an interesting and positive finding that, in doing relatively simple, but targeted exercises and training, senior individuals can have moderate improvements in their balance and, perhaps ultimately, reduce their fall-risk.
A realization of how specific exercises relate to balance performance is important for a wide demographic of individuals. Maintaining active and healthy living is particularly important for balance-impaired individuals (e.g., otherwise healthy individuals recovering from injury, fall-prone elderly, and stroke survivors) whom are interested in improving their balance for function in daily life. However, balance performance is also important for persons that are unimpaired (e.g., athletes). How balance performance may be improved as a result of, and in relation to, various athletic activities and exercises is a common question. Further, how certain activities can be used to prevent injury is an ultimate goal. Our objective was to compare standing balance in 3 unimpaired groups (i.e., female track & female tennis collegiate athletes and female non-athletes). To assess static balance, participants performed stance variations increasing in difficulty-level, utilizing a wide or tandem stance (increasing or decreasing support base) and eyes-open or eyes-closed (limiting or providing visual cues), while standing on a forceplate walkway. Through the recorded ground reaction forceplate-based, center-of-pressure (COP) position time series, we extracted velocity and displacement parameters that aided in identifying differences between the above groups. Our general findings were that anterior-posterior (AP, or front-to-back) COP displacement and velocity measures for female track athletes were unchanged relative to the (baseline) female non-athletes. However, mediolateral (ML, or side-to-side) measures, which have previously been shown to be associated with fall-risk, showed observable differences in displacement and velocity parameters, particularly for the female track athletes. Specifically, the female track athletes were better able to control their ML COP velocity in eyes-closed, wide, and eyes-open tandem conditions compared to non-athletes. However, tennis athletes had difficulty balancing in situations where eyes were closed (vision eliminated) and feet were tandem (base-of-support decreased) which was made apparent by the increases in all AP and ML COP-derived parameters. We interpreted this finding as the female tennis athletes were trained to rely heavily on visual cues (e.g., hand-eye or eye-body coordination), and also their balance may be more focused on maintaining their center-of-mass stability and body orientation, as opposed to COP per se. Our study lends new insights as to how various types of athletic activities, and reliance on vision in athletes, impacts balance performance in un-impaired females.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.