Eleven guest drugs with planar structures were incorporated into the intermolecular spaces between polyethylene glycol/γ-cyclodextrin (γ-CD)-polypseudorotaxanes by a sealed-heating method. Drug incorporation changed the crystal packing of γ-CD from hexagonal- to monoclinic-columnar forms, without dependence on the guest species. The incorporation of guest drugs was size dependent and stoichiometric. Guest drugs with one benzene ring and maximum cross sectional areas of ca. 40–55 Å2 exhibited a drug to γ-CD stoichiometry of 2:1. Meanwhile, the stoichiometry was 1:1 for drugs with 2–3 benzene rings and maximum cross sectional areas of ca. 60–75 Å2. More sterically bulky drugs (four and five benzene rings) did form complexes, though the complexation efficiency was insufficient to form stoichiometric complexes, due to steric hindrance. The volume of intermolecular space of the host was estimated to be larger than that of a β-CD cavity and as large as that of a γ-CD cavity. Hydrophobic and van der Waals interactions worked as driving forces for the complexation because polycyclic aromatic hydrocarbons with high log P values formed the complex. The dissolution property of the hydrophobic pharmaceutical drug naproxen was clearly improved by the complexation because naproxen existed in a monomolecular state in the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.