Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plantanimal interactions and ecosystem functions across the globe.
What are the ecological causes and consequences of variation in phytochemical diversity within and between plant taxa? Despite decades of natural products discovery by organic chemists and research by chemical ecologists, our understanding of phytochemically mediated ecological processes in natural communities has been restricted to studies of either broad classes of compounds or a small number of well-characterized molecules. Until now, no studies have assessed the ecological causes or consequences of rigorously quantified phytochemical diversity across taxa in natural systems. Consequently, hypotheses that attempt to explain variation in phytochemical diversity among plants remain largely untested. We use spectral data from crude plant extracts to characterize phytochemical diversity in a suite of co-occurring plants in the tropical genus Piper (Piperaceae). In combination with 20 years of data focused on Piper-associated insects, we find that phytochemical diversity has a direct and positive effect on the diversity of herbivores but also reduces overall herbivore damage. Elevated chemical diversity is associated with more specialized assemblages of herbivores, and the cascading positive effect of phytochemistry on herbivore enemies is stronger as herbivore diet breadth narrows. These results are consistent with traditional hypotheses that predict positive associations between plant chemical diversity, insect herbivore diversity, and trophic specialization. It is clear from these results that high phytochemical diversity not only enhances the diversity of plant-associated insects but also contributes to the ecological predominance of specialized insect herbivores.he Anthropocene has been characterized by huge losses of biodiversity caused by rapid global change, including habitat loss, fragmentation, invasive species, and climate change. Ecologists struggle to understand not only the consequences of diversity loss but also how to quantify ecologically relevant dimensions of diversity, including genetic, taxonomic, and functional diversity. Although it has been difficult to measure, phytochemical diversity (i.e., richness and abundance of plant compounds) is a key axis of functional diversity (1) that affects associated trophic levels and is likely driving other aspects of biodiversity (2-4). Variation in phytochemical or metabolic diversity in plants, which is further downstream than genomic, transcriptomic, or proteomic diversity (5, 6), potentially reflects variation in response to a diversity of natural enemies, including specialist and generalist insect herbivores (7,8). Furthermore, phytochemistry is one of the most relevant traits to measure when determining functional roles of plants in natural and managed communities (9).Considering the importance of phytochemical diversity for numerous natural processes, it is not surprising that a broad range of ecological and evolutionary hypotheses has been proposed to explain their role in interactions between plants and herbivores. From a coevolutionary perspecti...
Herbivore populations are influenced by a combination of food availability and predator pressure, the relative contribution of which is hypothesized to vary across a productivity gradient. In tropical forests, treefall gaps are pockets of high productivity in the otherwise less productive forest understory. Thus, we hypothesize that higher light availability in gaps will increase plant resources, thereby decreasing resource limitation of herbivores relative to the understory. As a result, predators should regulate herbivore populations in gaps, whereas food should limit herbivores in the understory. We quantified potential food availability and compared arthropod herbivore and predator densities in large forest light gaps and in the intact understory in Panama. Plants, young leaves, herbivores and predators were significantly more abundant per ground area in gaps than in the understory. This pattern was similar when we focused on seven gap specialist plant species and 15 shade-tolerant species growing in gaps and understory. Consistent with the hypothesis, herbivory rates were higher in gaps than the understory. Per capita predation rates on artificial caterpillars indicated higher predation pressure in gaps in both the dry and late wet seasons. These diverse lines of evidence all suggest that herbivores experience higher predator pressure in gaps and more food limitation in the understory.Herbivore populations are controlled by a combination of available food sources (bottom-up) and by predators (top-down). The relative importance of bottom-up and top-down controls have been studied and disputed for decades. Initially the biomass in one trophic level was viewed as a simple function of the biomass in the level below it (bottom-up) (Lindeman 1942). The debate began with Hairston et. al. 's (Hairston et al. 1960) seminal paper that introduced the concept of top-down control, in which predators controlled herbivore populations allowing plant biomass to accumulate. Since then, much effort has focused on quantifying and modeling the relative roles of top-down and bottom-up forces in different communities (Price et
Summary Chemically mediated plant–herbivore interactions contribute to the diversity of terrestrial communities and the diversification of plants and insects. While our understanding of the processes affecting community structure and evolutionary diversification has grown, few studies have investigated how trait variation shapes genetic and species diversity simultaneously in a tropical ecosystem.We investigated secondary metabolite variation among subpopulations of a single plant species, Piper kelleyi (Piperaceae), using high‐performance liquid chromatography (HPLC), to understand associations between plant phytochemistry and host‐specialized caterpillars in the genus Eois (Geometridae: Larentiinae) and associated parasitoid wasps and flies. In addition, we used a genotyping‐by‐sequencing approach to examine the genetic structure of one abundant caterpillar species, Eois encina, in relation to host phytochemical variation.We found substantive concentration differences among three major secondary metabolites, and these differences in chemistry predicted caterpillar and parasitoid community structure among host plant populations. Furthermore, E. encina populations located at high elevations were genetically different from other populations. They fed on plants containing high concentrations of prenylated benzoic acid.Thus, phytochemistry potentially shapes caterpillar and wasp community composition and geographic variation in species interactions, both of which can contribute to diversification of plants and insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.