Antibody-dependent enhancement (ADE), a phenomenon in which viral replication is increased rather than decreased by immune sera, has been observed in vitro for a large number of viruses of public health importance, including flaviviruses, coronaviruses, and retroviruses. The most striking in vivo example of ADE in humans is dengue hemorrhagic fever, a disease in which ADE is thought to increase the severity of clinical manifestations of dengue virus infection by increasing virus replication. We examine the epidemiological impact of ADE on the prevalence and persistence of viral serotypes. Using a dynamical system model of n cocirculating dengue serotypes, we find that ADE may provide a competitive advantage to those serotypes that undergo enhancement compared with those that do not, and that this advantage increases with increasing numbers of cocirculating serotypes. Paradoxically, there are limits to the selective advantage provided by increasing levels of ADE, because greater levels of enhancement induce large amplitude oscillations in incidence of all dengue virus infections, threatening the persistence of both the enhanced and nonenhanced serotypes. Although the models presented here are specifically designed for dengue, our results are applicable to any epidemiological system in which partial immunity increases pathogen replication rates. Our results suggest that enhancement is most advantageous in settings where multiple serotypes circulate and where a large host population is available to support pathogen persistence during the deep troughs of ADE-induced large amplitude oscillations of virus replication.dengue ͉ adaptive ͉ trade-off
Multistrain diseases are diseases that consist of several strains, or serotypes. The serotypes may interact by antibody-dependent enhancement (ADE), in which infection with a single serotype is asymptomatic, but infection with a second serotype leads to serious illness accompanied by greater infectivity. It has been observed from serotype data of dengue hemorrhagic fever that outbreaks of the four serotypes occur asynchronously. Both autonomous and seasonally driven outbreaks were studied in a model containing ADE. For sufficiently small ADE, the number of infectives of each serotype synchronizes, with outbreaks occurring in phase. When the ADE increases past a threshold, the system becomes chaotic, and infectives of each serotype desynchronize. However, certain groupings of the primary and secondary infectives remain synchronized even in the chaotic regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.