Ten years ago, a consensus report on the optimization of tacrolimus was published in this journal. In 2017, the Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicity (IATDMCT) decided to issue an updated consensus report considering the most relevant advances in tacrolimus pharmacokinetics (PK), pharmacogenetics (PG), pharmacodynamics, and immunologic biomarkers, with the aim to provide analytical and drug-exposure recommendations to assist TDM professionals and clinicians to individualize tacrolimus TDM and treatment. The consensus is based on in-depth literature searches regarding each topic that is addressed in this document. Thirty-seven international experts in the field of TDM of tacrolimus as well as its PG and biomarkers contributed to the drafting of sections most relevant for their expertise. Whenever applicable, the quality of evidence and the strength of recommendations were graded according to a published grading guide. After iterated editing, the final version of the complete document was approved by all authors. For each category of solid organ and stem cell transplantation, the current state of PK monitoring is discussed and the specific targets of tacrolimus trough concentrations (predose sample C0) are presented for subgroups of patients along with the grading of these recommendations. In addition, tacrolimus area under the concentration–time curve determination is proposed as the best TDM option early after transplantation, at the time of immunosuppression minimization, for special populations, and specific clinical situations. For indications other than transplantation, the potentially effective tacrolimus concentrations in systemic treatment are discussed without formal grading. The importance of consistency, calibration, proficiency testing, and the requirement for standardization and need for traceability and reference materials is highlighted. The status for alternative approaches for tacrolimus TDM is presented including dried blood spots, volumetric absorptive microsampling, and the development of intracellular measurements of tacrolimus. The association between CYP3A5 genotype and tacrolimus dose requirement is consistent (Grading A I). So far, pharmacodynamic and immunologic biomarkers have not entered routine monitoring, but determination of residual nuclear factor of activated T cells–regulated gene expression supports the identification of renal transplant recipients at risk of rejection, infections, and malignancy (B II). In addition, monitoring intracellular T-cell IFN-g production can help to identify kidney and liver transplant recipients at high risk of acute rejection (B II) and select good candidates for immunosuppression minimization (B II). Although cell-free DNA seems a promising biomarker of acute donor injury and to assess the minimally effective C0 of tacrolimus, multicenter prospective interventional studies are required to better evaluate its clinical utility in solid organ transplantation. Population PK models including CYP3A5 and CYP3A4 genotypes will be considered to guide initial tacrolimus dosing. Future studies should investigate the clinical benefit of time-to-event models to better evaluate biomarkers as predictive of personal response, the risk of rejection, and graft outcome. The Expert Committee concludes that considerable advances in the different fields of tacrolimus monitoring have been achieved during this last decade. Continued efforts should focus on the opportunities to implement in clinical routine the combination of new standardized PK approaches with PG, and valid biomarkers to further personalize tacrolimus therapy and to improve long-term outcomes for treated patients.
When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and
In 2014, the Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology called a meeting of international experts to provide recommendations to guide therapeutic drug monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice. EVR is a potent inhibitor of the mammalian target of rapamycin, approved for the prevention of organ transplant rejection and for the treatment of various types of cancer and tuberous sclerosis complex. EVR fulfills the prerequisites for TDM, having a narrow therapeutic range, high interindividual pharmacokinetic variability, and established drug exposure-response relationships. EVR trough concentrations (C0) demonstrate a good relationship with overall exposure, providing a simple and reliable index for TDM. Whole-blood samples should be used for measurement of EVR C0, and sampling times should be standardized to occur within 1 hour before the next dose, which should be taken at the same time everyday and preferably without food. In transplantation settings, EVR should be generally targeted to a C0 of 3-8 ng/mL when used in combination with other immunosuppressive drugs (calcineurin inhibitors and glucocorticoids); in calcineurin inhibitor-free regimens, the EVR target C0 range should be 6-10 ng/mL. Further studies are required to determine the clinical utility of TDM in nontransplantation settings. The choice of analytical method and differences between methods should be carefully considered when determining EVR concentrations, and when comparing and interpreting clinical trial outcomes. At present, a fully validated liquid chromatography tandem mass spectrometry assay is the preferred method for determination of EVR C0, with a lower limit of quantification close to 1 ng/mL. Use of certified commercially available whole-blood calibrators to avoid calibration bias and participation in external proficiency-testing programs to allow continuous cross-validation and proof of analytical quality are highly recommended. Development of alternative assays to facilitate on-site measurement of EVR C0 is encouraged.
Objective. To study the relationship between serum hydroxychloroquine (HCQ) concentrations and flares of systemic lupus erythematosus (SLE) in a longitudinal cohort of patients. Methods. Patients who fulfilled ‡4 American College of Rheumatology classification criteria for SLE and had been treated with HCQ for >6 months were studied. Blood was assayed for HCQ levels by tandem mass spectrometry. Patients were serially assessed for disease activity, using the Safety of Estrogens in Lupus Erythematosus National Assessment (SELENA) version of the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) and flares (SELENA flares instrument). Comparison of the mean summated SLEDAI scores over time and rates of flares in groups with different HCQ levels was performed by the Kruskal-Wallis test. Results. A total of 276 SLE patients were studied (93% women, mean 6 SD age 41.0 6 13.8 years). The proportion of patients with HCQ levels <10 (total noncompliance), 10-500 (subtherapeutic), and >500 ng/ml (therapeutic) was 11%, 77%, and 12%, respectively. HCQ levels correlated significantly with the prescribed dose but not with body weight or renal function. The prescribed HCQ dose also correlated significantly with baseline SLEDAI scores, indicating that higher doses were used for more active manifestations. After a mean 6 SD observation period of 32.5 6 5.5 months, the mean summated SLEDAI score and the incidence of SLE flares was not statistically different among patients with different baseline HCQ levels. In a subgroup of 73 patients with serologic and clinical remission and having therapeutic HCQ levels, a trend of lower disease activity and fewer incidences of flares was observed. Conclusion. Noncompliance and subtherapeutic serum HCQ levels were seen frequently in these SLE patients, which was partly due to the low prescribed dose. In patients in remission, higher HCQ concentrations were associated with a trend showing fewer flares over time.
The combination of pharmacokinetic and pharmacodynamic monitoring of immunosuppressive drugs provides a novel method for the optimization of drug dosing. We chose to investigate this with the use of mycophenolic acid (MPA), an immunosuppressive drug that mediates its effect by the inhibition of inosine monophosphate dehydrogenase (IMPDH), a key enzyme in the de novo biosynthesis of purines. The relationship between MPA concentration in plasma, IMPDH activity in whole blood, and nucleotide concentration in lymphocytes was investigated in renal-transplant recipients, who were randomized to receive either mycophenolate mofetil (MMF) (n = 5) or azathioprine (AZA) (n = 7), in combination with cyclosporine and prednisone. Blood samples were collected throughout the dosing interval. Pharmacokinetic analysis revealed substantial variability among the patients in the absorption and clearance of MPA. An inverse relationship was found between the MPA concentration of IMPDH activity in whole blood. The peak concentration of MPA achieved at 1 hr after dosing resulted in approximately 40% inhibition of IMPDH activity. As the MPA concentration decreased throughout the dosing interval, there was a gradual restoration of IMPDH activity. The inhibition of IMPDH activity (P < 0.05) in MMF-treated patients as compared with the AZA-treated controls was maintained for approximately 8 hr after dosing. No statistically significant (P > 0.05) difference between the predose and the 12 hr postdose activity was observed. The concentrations of guanine nucleotides, GDP and GMP, were significantly lower than in the AZA-treated group at most of the time points after dosing; however, considerable variability was observed. The measurement of the pharmacodynamic response to immunosuppressive drugs may provide not only a mechanism to predict the most appropriate dosing regimen, but also a viable alternative to traditional therapeutic drug monitoring, by assessing the overall state of immunosuppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.