Microencapsulation and coating are preferred methods to increase the viability of the probiotic strains. The effect of microencapsulation technologies and materials used as microcapsule cores on viability is being investigated during development. In the present study, chitosan-coated and Eudragit L100-55-coated alginate microspheres were produced to encapsulate Lactobacillus plantarum probiotic bacteria. After the heat loading and simulated gastrointestinal juice dissolution study, the differences in viability were compared based on the CFU/mL values of the samples. The kinetics of the bacterial release and the ratio of the released live/dead cells of Lactobacillus plantarum were examined by flow cytometry. In all cases, we found that the CFU value for the chitosan-coated samples was virtually zero. The ratio of live/dead cells in the 120 min samples was significantly reduced to less than 20% for chitosan, while it was nearly 90% in the uncoated and Eudragit L100-55-coated samples. In the case of chitosan, based on some published MIC values and the amount of chitosan coating determined in the present study, we concluded the reason for our results. It was the first time to determine the amount of the released chitosan coat of the dried microcapsule, which reached the MIC value during the dissolution studies.
The antimicrobial effect of chitosan and synthetic chitosan derivatives has been confirmed on many Gram-positive and Gram-negative bacteria and fungi. The tests were carried out on pathogenic microorganisms, so the mechanism and concentration dependence of the inhibitory effect of chitosan were revealed. We conducted our tests on a probiotic strain, Lactobacillus plantarum. Commercially available chitosan derivatives of different molecular weights were added to L. plantarum suspension in increasing concentrations. The minimum inhibitory concentration (MIC) value of chitosan was determined and confirmed the viability decreasing effect at concentrations above the MIC with a time-kill assay. The release of bacterium cell content was measured at 260 nm after treatment with 0.001–0.1% concentration chitosan solution. An increase in the permeability of the cell membrane was observed only with the 0.1% treatment. The interaction was also investigated by zeta potential measurement, and the irreversible interaction and concentration dependence were established in all concentrations. The interaction of fluorescein isothiocyanate (FITC) labeled low molecular weight chitosan and bacterial cells labeled with membrane dye (FM® 4–64) was confirmed by confocal microscopy. In conclusion, the inhibitory effect of chitosan was verified on a probiotic strain, which is an undesirable effect in probiotic preparations containing chitosan additives, while the inhibitory effect experienced with pathogenic strains is beneficial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.