Conversion of glucose into glycogen is a major pathway that contributes to the removal of glucose from the portal vein by the liver in the postprandial state. It is regulated in part by the increase in blood-glucose concentration in the portal vein, which activates glucokinase, the first enzyme in the pathway, causing an increase in the concentration of glucose 6-P (glucose 6-phosphate), which modulates the phosphorylation state of downstream enzymes by acting synergistically with other allosteric effectors. Glucokinase is regulated by a hierarchy of transcriptional and post-transcriptional mechanisms that are only partially understood. In the fasted state, glucokinase is in part sequestered in the nucleus in an inactive state, complexed to a specific regulatory protein, GKRP (glucokinase regulatory protein). This reserve pool is rapidly mobilized to the cytoplasm in the postprandial state in response to an elevated concentration of glucose. The translocation of glucokinase between the nucleus and cytoplasm is modulated by various metabolic and hormonal conditions. The elevated glucose 6-P concentration, consequent to glucokinase activation, has a synergistic effect with glucose in promoting dephosphorylation (inactivation) of glycogen phosphorylase and inducing dephosphorylation (activation) of glycogen synthase. The latter involves both a direct ligand-induced conformational change and depletion of the phosphorylated form of glycogen phosphorylase, which is a potent allosteric inhibitor of glycogen synthase phosphatase activity associated with the glycogen-targeting protein, GL [hepatic glycogen-targeting subunit of PP-1 (protein phosphatase-1) encoded by PPP1R3B]. Defects in both the activation of glucokinase and in the dephosphorylation of glycogen phosphorylase are potential contributing factors to the dysregulation of hepatic glucose metabolism in Type 2 diabetes.
The release of glucokinase from digitonin-permeabilized hepatocytes shows different characteristics with respect to ionic strength and [MgCl2] from the release of other cytoplasmic enzymes. Release of glucokinase is most rapid at low ionic strength (300 mM sucrose, 3 mM Hepes) and is inhibited by increasing concentration of KCl [concn. giving half-maximal inhibition (I50) 25 mM] or Mg2+ (I50 0.5 mM). Release of phosphoglucoisomerase, phosphoglucomutase and glucose-6-phosphate dehydrogenase is independent of ionic strength, but shows a small inhibition by MgCl2 (20%, versus > 80% for glucokinase). Lactate dehydrogenase release increases with increasing ionic strength [concn. giving half-maximal activation (A50) 10 mM KCl] or [MgCl2]. The rate and extent of glucokinase release during permeabilization in 300 mM sucrose, 5 mM MgCl2 or in medium with ionic composition resembling cytoplasm (150 mM K+, 50 mM Cl-, 1 mM Mg2+) depends on the substrate concentrations with which the hepatocytes have been preincubated. In hepatocytes pre-cultured with 5 mM glucose the release of glucokinase was much slower than that of other cytoplasmic enzymes measured. However, preincubation with glucose (10-30 mM) or fructose (50 microM-1 mM) markedly increased glucokinase release. This suggests that, in cells maintained in 5 mM glucose, glucokinase is present predominantly in a bound state and this binding is dependent on the presence of Mg2+. The enzyme can be released or translocated from its bound state by an increase in [glucose] (A50 15 mM) or by fructose (A50 50 microM). The effects of glucose and fructose were rapid (t1/2 5 min) and reversible, and were potentiated by insulin and counteracted by glucagon. They were inhibited by cyanide, but not by cytochalasin D, phalloidin or colchicine. Mannose had a glucose-like effect (A50 approximately 15 mM), whereas galactose, 3-O-methyl-D-glucose and 2-deoxyglucose were ineffective. When hepatocytes were incubated with [2-3H, U-14C]glucose, the incorporation of 3H/14C label into glycogen correlated with the extent of glucokinase release. Since 2-3H is lost during conversion of glucose 6-phosphate into fructose 6-phosphate, substrate-induced translocation of glucokinase from a Mg(2+)-dependent binding site to an alternative site might favour the partitioning of glucose 6-phosphate towards glycogen, as opposed to phosphoglucoisomerase.
Glucokinase reversibly partitions between a bound and a free state in the hepatocyte in response to the metabolic status of the cell. Maximum binding occurs at low [glucose] (<5 mM) and minimum binding at high [glucose] or in the presence of sorbitol or fructose. In this study we determined the binding characteristics of glucokinase in the hepatocyte in situ, by adenovirus-mediated glucokinase overexpression combined with the digitonin-permeabilization technique. We also determined the sensitivity of glycogen synthesis to changes in either total glucokinase overexpression or in free glucokinase activity. Glucokinase overexpression is associated with an increase in both free and bound activity, with an overall decrease in the proportion of bound activity. In hepatocytes incubated at low [glucose] (0-5 mM), glucokinase binding involves a high-affinity binding site with a Kd of approximately 0.1 microM and a binding capacity of approximately 3 pmol/mg total cell protein and low-affinity binding with a Kd of approximately 1.6 microM. Increasing glucose concentration to 20 mM causes a dose-dependent increase in the Kd of the high- affinity site to approximately 0.6 microM, and this effect was mimicked by 50 microM sorbitol, a precursor of fructose 1-P, confirming that this site is the regulatory protein of glucokinase. Glycogen synthesis determined from the incorporation of [2-3H,U-14C]glucose into glycogen at 5 mM or 10 mM glucose was very sensitive to small increases in total glucokinase activity and correlated more closely with the increase in free glucokinase activity. The relation between glycogenic flux and glucokinase activity is sigmoidal. Expression of the sensitivity of glycogen synthesis to glucokinase activity as the control coefficient reveals that the coefficient is greater for the incorporation of 2-tritium (which occurs exclusively by the direct pathway) than for incorporation of 14C label (which involves direct and indirect pathways) and is greater at 5 mM glucose (when glucokinase is maximally sequestered at its high-affinity site) than at 10 mM glucose. The results support the hypothesis that compartmentation of glucokinase in the hepatocyte increases the sensitivity of glycogen synthesis to small changes in total glucokinase activity and that glucose-induced translocation of glucokinase has a major role in the acute control of glycogen synthesis.
Glucokinase (GK) has a major role in the control of blood glucose homeostasis and is a strong potential target for the pharmacological treatment of type 2 diabetes. We report here the mechanism of action of two novel and potent direct activators of GK: 6-[(3-isobutoxy-5-isopropoxybenzoyl)amino]nicotinic acid (GKA1) and 5-({3-isopropoxy-5-[2-(3-thienyl)ethoxy] benzoyl}amino)-1,3,4-thiadiazole-2-carboxylic acid (GKA2), which increase the affinity of GK for glucose by 4-and 11-fold, respectively. GKA1 increased the affinity of GK for the competitive inhibitor mannoheptulose but did not affect the affinity for the inhibitors palmitoylCoA and the endogenous 68-kDa regulator (GK regulatory protein [GKRP]), which bind to allosteric sites or to N-acetylglucosamine, which binds to the catalytic site. In hepatocytes, GKA1 and GKA2 stimulated glucose phosphorylation, glycolysis, and glycogen synthesis to a similar extent as sorbitol, a precursor of fructose 1-phosphate, which indirectly activates GK through promoting its dissociation from GKRP. Consistent with their effects on isolated GK, these compounds also increased the affinity of hepatocyte metabolism for glucose. GKA1 and GKA2 caused translocation of GK from the nucleus to the cytoplasm. This effect was additive with the effect of sorbitol and is best explained by a "glucose-like" effect of the GK activators in translocating GK to the cytoplasm. In conclusion, GK activators are potential antihyperglycemic agents for the treatment of type 2 diabetes through the stimulation of hepatic glucose metabolism by a mechanism independent of GKRP. Diabetes 53:535-541, 2004
Glucose metabolism in the liver activates the transcription of various genes encoding enzymes of glycolysis and lipogenesis and also G6pc (glucose-6-phosphatase). Allosteric mechanisms involving glucose 6-phosphate or xylulose 5-phosphate and covalent modification of ChREBP (carbohydrate-response element-binding protein) have been implicated in this mechanism. However, evidence supporting an essential role for a specific metabolite or pathway in hepatocytes remains equivocal. By using diverse substrates and inhibitors and a kinase-deficient bisphosphatase-active variant of the bifunctional enzyme PFK2/FBP2 (6-phosphofructo-2-kinase-fructose-2,6-bisphosphatase), we demonstrate an essential role for fructose 2,6-bisphosphate in the induction of G6pc and other ChREBP target genes by glucose. Selective depletion of fructose 2,6-bisphosphate inhibits glucose-induced recruitment of ChREBP to the G6pc promoter and also induction of G6pc by xylitol and gluconeogenic precursors. The requirement for fructose 2,6-bisphosphate for ChREBP recruitment to the promoter does not exclude the involvement of additional metabolites acting either co-ordinately or at downstream sites. Glucose raises fructose 2,6-bisphosphate levels in hepatocytes by reversing the phosphorylation of PFK2/FBP2 at Ser32, but also independently of Ser32 dephosphorylation. This supports a role for the bifunctional enzyme as the phosphometabolite sensor and for its product, fructose 2,6-bisphosphate, as the metabolic signal for substrate-regulated ChREBP-mediated expression of G6pc and other ChREBP target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.